1 research outputs found
FuSSI-Net: Fusion of Spatio-temporal Skeletons for Intention Prediction Network
Pedestrian intention recognition is very important to develop robust and safe
autonomous driving (AD) and advanced driver assistance systems (ADAS)
functionalities for urban driving. In this work, we develop an end-to-end
pedestrian intention framework that performs well on day- and night- time
scenarios. Our framework relies on objection detection bounding boxes combined
with skeletal features of human pose. We study early, late, and combined (early
and late) fusion mechanisms to exploit the skeletal features and reduce false
positives as well to improve the intention prediction performance. The early
fusion mechanism results in AP of 0.89 and precision/recall of 0.79/0.89 for
pedestrian intention classification. Furthermore, we propose three new metrics
to properly evaluate the pedestrian intention systems. Under these new
evaluation metrics for the intention prediction, the proposed end-to-end
network offers accurate pedestrian intention up to half a second ahead of the
actual risky maneuver.Comment: 5 pages, 6 figures, 5 tables, IEEE Asilomar SS