1,309 research outputs found

    In reply

    Get PDF

    Supramolecular modification of ABC triblock terpolymers in confinement assembly

    Get PDF
    The self-assembly of AB diblock copolymers in three-dimensional (3D) soft confinement of nanoemulsions has recently become an attractive bottom up route to prepare colloids with controlled inner morphologies. In that regard, ABC triblock terpolymers show a more complex morphological behavior and could thus give access to extensive libraries of multicompartment microparticles. However, knowledge about their self-assembly in confinement is very limited thus far. Here, we investigated the confinement assembly of polystyrene-block-poly(4-vinylpyridine)-block-poly(tert-butyl methacrylate) (PS-b-P4VP-b-PT or SVT) triblock terpolymers in nanoemulsion droplets. Depending on the block weight fractions, we found spherical microparticles with concentric lamella–sphere (ls) morphology, i.e., PS/PT lamella intercalated with P4VP spheres, or unusual conic microparticles with concentric lamella–cylinder (lc) morphology. We further described how these morphologies can be modified through supramolecular additives, such as hydrogen bond (HB) and halogen bond (XB) donors. We bound donors to the 4VP units and analyzed changes in the morphology depending on the binding strength and the length of the alkyl tail. The interaction with the weaker donors resulted in an increase in volume of the P4VP domains, which depends upon the molar fraction of the added donor. For donors with a high tendency of intermolecular packing, a visible change in the morphology was observed. This ultimately caused a shape change in the microparticle. Knowledge about how to control inner morphologies of multicompartment microparticles could lead to novel carbon supports for catalysis, nanoparticles with unprecedented topologies, and potentially, reversible shape changes by light actuation

    Halogen bonding stabilizes a cis-azobenzene derivative in the solid state: A crystallographic study

    Get PDF
    Crystals of trans- and cis-isomers of a fluorinated azobenzene derivative have been prepared and characterized by single-crystal X-ray diffraction. The presence of F atoms on the aromatic core of the azobenzene increases the lifetime of the metastable cis-isomer, allowing single crystals of the cis-azobenzene to be grown. Structural analysis on the cis-azobenzene, complemented with density functional theory calculations, highlights the active role of the halogen-bond contact (N...I synthon) in promoting the stabilization of the cis-isomer. The presence of a long aliphatic chain on the azobenzene unit induces a phase segregation that stabilizes the molecular arrangement for both the trans- and cis-isomers. Due to the rarity of cis-azobenzene crystal structures in the literature, our paper makes a step towards understanding the role of non-covalent interactions in driving the packing of metastable azobenzene isomers. This is expected to be important in the future rational design of solid-state, photoresponsive materials based on halogen bonding. We show by single-crystal X-ray diffraction studies and computational analysis that halogen bonding can stabilize a metastable cis-azobenzene derivative in the solid state

    Coordination networks incorporating halogen-bond donor sites and azobenzene groups

    Get PDF
    Two Zn coordination networks, [Zn(1)(Py)2]2(2-propanol)n (3) and [Zn(1)2(Bipy)2](DMF)2n (4), incorporating halogen-bond (XB) donor sites and azobenzene groups have been synthesized and fully characterized. Obtaining 3 and 4 confirms that it is possible to use a ligand wherein its coordination bond acceptor sites and XB donor sites are on the same molecular scaffold (i.e., an aromatic ring) without interfering with each other. We demonstrate that XBs play a fundamental role in the architectures and properties of the obtained coordination networks. In 3, XBs promote the formation of 2D supramolecular layers, which, by overlapping each other, allow the incorporation of 2-propanol as a guest molecule. In 4, XBs support the connection of the layers and are essential to firmly pin DMF solvent molecules through I⋯O contacts, thus increasing the stability of the solvated systems

    Electron concentration effects on the Shastry-Sutherland phase stability in Ce_{2-x}Pd_{2+y}In_{1-z} solid solutions

    Full text link
    The stability of a Shastry-Sutherland ShSu phase as a function of electron concentration is investigated through the field dependence of thermal and magnetic properties of the solid solution Ce_{2-x}Pd_{2+y}In_{1-z} in the antiferromagnetic branch. In these alloys the electronic (holes) variation is realized by increasing PdPd concentration. The AF transition T_M decreases from 3.5K to 2.8K as PdPd concentration increases from y=0.2 to y=0.4. By applying magnetic field, the ShSu phase is suppressed once the field induced ferromagnetic polarization takes over at a critical field B_{cr} which increases with PdPd content. A detailed analysis around the critical point reveals a structure in the maximum of the dM/dB derivative, which is related with incipient steps in the magnetization M(B) as predicted by the theory for the ShSu lattice. The crossing of M(B) isotherms, observed in ShSu prototype compounds, is also analyzed. The effect of InIn substitution by PdPd is interpreted as an increase of the number of 'holes' in the conduction band and results in a unique parameter able to describe the variation of the magnetic properties along the studied range of concentration.Comment: 8 pages, 11 figure

    Third trimester ultrasound soft-tissue measurements accurately predicts macrosomia

    Get PDF
    OBJECTIVE: To evaluate the accuracy of sonographic measurements of fetal soft tissue in the prediction of macrosomia. METHODS: Electronic databases were searched from their inception until September 2015 with no limit for language. We included only studies assessing the accuracy of sonographic measurements of fetal soft tissue in the abdomen or thigh in the prediction of macrosomia  ≥34 weeks of gestation. The primary outcome was the accuracy of sonographic measurements of fetal soft tissue in the prediction of macrosomia. We generated the forest plot for the pooled sensitivity and specificity with 95% confidence interval (CI). Additionally, summary receiver-operating characteristics (ROC) curves were plotted and the area under the curve (AUC) was also computed to evaluate the overall performance of the diagnostic test accuracy. RESULTS: Three studies, including 287 singleton gestations, were analyzed. The pooled sensitivity of sonographic measurements of abdominal or thigh fetal soft tissue in the prediction of macrosomia was 80% (95% CI: 66-89%) and the pooled specificity was 95% (95% CI: 91-97%). The AUC for diagnostic accuracy of sonographic measurements of fetal soft tissue in the prediction of macrosomia was 0.92 and suggested high diagnostic accuracy. CONCLUSIONS: Third-trimester sonographic measurements of fetal soft tissue after 34 weeks may help to detect macrosomia with a high degree of accuracy. The pooled detection rate was 80%. A standardization of measurements criteria, reproducibility, building reference charts of fetal subcutaneous tissue and large studies to assess the optimal cutoff of fetal adipose thickness are necessary before the introduction of fetal soft-tissue markers in the clinical practice

    Early amniotomy after cervical ripening for induction of labor: a systematic review and meta-analysis of randomized controlled trials

    Get PDF
    OBJECTIVE DATA: Timing of artificial rupture of membranes (ie, amniotomy) in induction of labor is controversial, because it has been associated not only with shorter labors, but also with fetal nonreassuring testing, at times necessitating cesarean delivery. The aim of this systematic review and metaanalysis of randomized trials was to evaluate the effectiveness of early amniotomy vs late amniotomy or spontaneous rupture of membranes after cervical ripening. STUDY: The search was conducted with the use of electronic databases from inception of each database through February 2019. Review of articles included the abstracts of all references that were retrieved from the search. STUDY APPRAISAL AND SYNTHESIS METHODS: Selection criteria included randomized clinical trials that compared early amniotomy vs control (ie, late amniotomy or spontaneous rupture of membranes) after cervical ripening with either Foley catheter or prostaglandins at any dose. The primary outcome was the incidence of cesarean delivery. The summary measures were reported as summary relative risk with 95% of confidence interval with the use of the random effects model of DerSimonian and Laird. RESULTS: Four trials that included 1273 women who underwent cervical ripening with either Foley catheter or prostaglandins and then were assigned randomly to either early amniotomy, late amniotomy, or spontaneous rupture of membranes (control subjects) were included in the review. Women who were assigned randomly to early amniotomy had a similar risk of cesarean delivery (31.1% vs 30.9%; relative risk, 1.05; 95% confidence interval, 0.71-1.56) compared with control subjects and had a shorter interval from induction to delivery of approximately 5 hours (mean difference, -4.95 hours; 95% confidence interval, -8.12 to -1.78). Spontaneous vaginal delivery was also reduced in the early amniotomy group, but only 1 of the included trials reported this outcome (67.5% vs 69.1%; relative risk, 0.78; 95% confidence interval, 0.66-0.93). No between-group differences were reported in the other obstetrics or perinatal outcomes. CONCLUSION: After cervical ripening, routine early amniotomy does not increase the risk of cesarean delivery and reduces the interval from induction to delivery

    Halogen bonding enhances nonlinear optical response in poled supramolecular polymers

    Get PDF
    We demonstrate that halogen bonding strongly enhances the nonlinear optical response of poled supramolecular polymer systems. We compare three nonlinear optical chromophores with similar electronic structures but different bond-donating units, and show that both the type and the strength of the noncovalent interaction between the chromophores and the polymer matrix play their own distinctive roles in the optical nonlinearity of the systems

    Efficient light-induced phase transitions in halogen-bonded liquid crystals

    Get PDF
    Here, we present a new family of light-responsive, fluorinated supramolecular liquid crystals (LCs) showing efficient and reversible light-induced LC-to-isotropic phase transitions. Our materials design is based on fluorinated azobenzenes, where the fluorination serves to strengthen the noncovalent interaction with bond-accepting stilbazole molecules, and increase the lifetime of the cis-form of the azobenzene units. The halogen-bonded LCs were characterized by means of X-ray diffraction, hot-stage polarized optical microscopy, and differential scanning calorimetry. Simultaneous analysis of light-induced changes in birefringence, absorption, and optical scattering allowed us to estimate that <4% of the mesogenic units in the cis-form suffices to trigger the full LC-to-isotropic phase transition. We also report a light-induced and reversible crystal-to-isotropic phase transition, which has not been previously observed in supramolecular complexes. In addition to fundamental understanding of light-responsive supramolecular complexes, we foresee this study to be important in the development of bistable photonic devices and supramolecular actuators
    • …
    corecore