1,304 research outputs found

    Flexible profile approach to the conjugate heat transfer problem

    Full text link
    The flexible profile approach proposed earlier to create CTM (compact or reduced order thermal models) is extended to cover the area of conjugate heat transfer. The flexible profile approach is a methodology that allows building a highly boundary conditions independent CTM, with any desired degree of accuracy, that may adequately replace detailed 3D models for the whole spectrum of applications in which the modeled object may be used. The extension to conjugate problems radically solves the problem of interfacing two different domains. Each domain, fluid or solid, can be "compacted" independently creating two CTM that can be joined together to produce reliable results for any arbitrary set of external boundary conditions.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Smart windows: Thermal modelling and evaluation

    Get PDF
    Copyright @ 2014 The Authors. Published by Elsevier Ltd. This is an open access article shared under the CC BY license (http://creativecommons.org/licenses/by/3.0/).A numerical investigation of the performance of a multi paned smart window integrated with water-cooled high efficiency third generation GaAsP/InGaAs QWSC (∼32% efficiency) solar cells illuminated by two-axis tracking solar concentrators at 500× in the inter pane space is presented. Optimising system parameters such as optical concentration ratio and coolant (water) flow rate is essential in order to avoid degradation in system performance due to high cell temperatures and thermal stresses. Detailed modelling of the thermo-fluid characteristics of the smart windows system was undertaken using a finite volume CFD package. Results of this analysis which considered the conductive, convective and radiative heat exchange processes taking place in the interior of the smart window system as well as the heat exchange to the internal and external ambient environment are presented.Engineering and Physical Sciences Research Counci

    Review: Beneficial Health Effects of Olive Leaves Extracts

    Get PDF
    The olive leaves are well known for many useful pharmacological effects. Olive leaves extracts have anti-microbial, anti-inflammatory, anti-oxidant anti-hypertensive, anti-hypercholestermic, anti-hyperglycemic, anti-thrombotic, diuretic and anti-tumor properties. In this review article, we have showed huge collective medical activities of olive leaves extracts that can be applied for treating variety of health problems. Keywords: Olive leaves extracts, Polyphenols, Oleuropein, Oleuropeosides, Health benefits.

    Killers at the crossroads: The use of innate immune cells in adoptive cellular therapy of cancer

    Get PDF
    Adoptive cell therapy (ACT) is an approach to cancer treatment that involves the use of antitumor immune cells to target residual disease in patients after completion of chemo/radiotherapy. ACT has several advantages compared with other approaches in cancer immunotherapy, including the ability to specifically expand effector cells in vitro before selection for adoptive transfer, as well as the opportunity for host manipulation in order to enhance the ability of transferred cells to recognize and kill established tumors. One of the main challenges to the success of ACT in cancer clinical trials is the identification and generation of antitumor effector cells with high avidity for tumor recognition. Natural killer (NK) cells, cytokine‐induced killers and natural killer T cells are key innate or innate‐like effector cells in cancer immunosurveillance that act at the interface between innate and adaptive immunity, to have a greater influence over immune responses to cancer. In this review, we discuss recent studies that highlight their potential in cancer therapy and summarize clinical trials using these effector immune cells in adoptive cellular therapy for the treatment of cancer

    Geometry of Discrete Quantum Computing

    Full text link
    Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2^{n} infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields Fp^2 (based on primes p congruent to 3 mod{4}) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space CP{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p+1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to DCP{2^{n}-1}, the discrete analog of the complex projective space, which has p^{2^{n}-1} (p-1)\prod_{k=1}^{n-1} (p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field Fp^2 have p^{n} (p-1)^{n} unentangled states (the product of the tally for a single qubit) with purity 1, and they have p^{n+1}(p-1)(p+1)^{n-1} maximally entangled states with purity zero.Comment: 24 page

    Heterologous COVID-19 vaccinations of Covishield/Astrazenica and Pfizer/Biontech: a case report

    Get PDF
    The most significant scientific breakthrough in the fight against COVID-19 pandemic is the speedy creation of COVID-19 vaccinations. Despite the fact that all licensed vaccines' efficacy and safety have been shown in large clinical trials, but the data regarding heterologous vaccination regimens' efficiency and safety is still limited. Heterologous schedules are intriguing for a variety of reasons, including logistical and therapeutic efficacy. The approval of heterologous vaccination will give countries with limited vaccine access and countries where different vaccines may become available at different times the opportunity to make vaccination programmes more flexible in response to supply fluctuations. Heterologous regimens have the potential to elicit a greater response, resulting in increased efficacy. In this case report we presented an adult male who was inadvertently given a combination of Covishield and Pfizer COVID-19 vaccines within a 3 weeks interval period. This event happened accidentally. The patient was reassured and followed up after 8 weeks without any adverse reaction.

    Risks of Environmental Genotoxicants

    Get PDF
    Humans have throughout their development been exposed to various environmental genotoxicants through food, air, water, and soil. Environmental exposure to genotoxic compounds may induce damage to human health and thereby increase risks of human cancers and other diseases. Environmental genotoxic chemicals have the ability to induce mutations. Such mutations can give rise to cancer in somatic cells. However, when germ cells are affected, the damage can also have an effect on the next and successive generations. Because of the potential health hazard represented by exposure to genotoxic chemicals, it is important that all chemicals for which there is possible human exposure be screened for genotoxic activity. If genotoxic hazard is detected, then the risks of exposure can be assessed and the use of the chemical controlled and when appropriate eliminated from the market and the environment. In this chapter, a general overview of the genotoxicity and the genotoxicity of some environmental genotoxicants are discussed. This is followed by a description of the genotoxic properties of some environmental genotoxicants such as bisphenols and mycotoxins, which are prominent environmental contaminates, and is believed to be genotoxic agents that contribute to the high incidence of carcinogenicity among populations

    Evaluation of Chromosomal Instability in Diabetic Rats Treated with Naringin

    Get PDF
    We used the bone marrow DNA strand breaks, micronucleus formations, spermatocyte chromosomal aberrations, and sperm characteristic assays to investigate the chromosomal instability in somatic and germinal cells of diabetic rats treated with multiple doses of naringin. The obtained results revealed that naringin was neither cytotoxic nor genotoxic for the rats at all tested doses. Moreover, naringin significantly reduced the diabetes-induced chromosomal instability in somatic and germinal cells in a dose-dependent manner. In addition, diabetes induced marked biochemical alterations characteristic of oxidative stress including enhanced lipid peroxidation, accumulation of oxidized glutathione, reduction in reduced glutathione, and accumulation of intracellular reactive oxygen species. Treatment with naringin ameliorated these biochemical markers dose-dependently. In conclusion, naringin confers an appealing protective effect against diabetes-induced chromosomal instability towards rat somatic and germinal cells which might be explained partially via diminishing the de novo free radical generation induced by hyperglycemia. Thus, naringin might be a good candidate to reduce genotoxic risk associated with hyperglycemia and may provide decreases in the development of secondary malignancy and abnormal reproductive outcomes risks, which seems especially important for diabetic patients
    corecore