177 research outputs found

    Band-gap tuning and linear magnetoresistance in the silver chalcogenides

    Get PDF
    Optimally doped silver selenide and silver telluride exhibit linear positive magnetoresistance over decades in magnetic field and on a scale comparable to the colossal magnetoresistance compounds. We use hydrostatic pressure to smoothly alter the band structure of Ag-rich and Ag-deficient samples of semiconducting Ag_(2±δ)Te of fixed stoichiometry and disorder. We find that the magnetoresistance spikes and the linear field dependence emerges when the bands cross and the Hall coefficient changes sign

    A High Energy X-Ray and Neutron Scattering Study of Iron Phosphate Glasses Containing Uranium

    Get PDF
    The atomic structure of iron phosphate glasses containing uranium has been studied by complementary neutron and x-ray scattering techniques. by combining x-ray and neutron structure factors, detailed information about different pair interactions has been obtained. Most of the basic structural features such as coordination numbers and O-O and P-O distances in uranium containing glasses are the same as those in the base glass of batch composition 40Fe2O3-60P2O5 (mol %). However, the Fe-O distances change slightly with the addition of uranium. The observed structural parameters support a structural model in which the waste elements occupy voids in the Fe-O-P network, hence, not altering the basic structure of the parent iron phosphate glass

    The Structure, Dynamics and Electronic Structure of Liquid Ag-Se Alloys Investigated by Ab Initio Simulation

    Full text link
    Ab initio molecular-dynamics simulations have been used to investigate the structure, dynamics and electronic properties of the liquid alloy Ag(1-x)Se(x) at 1350 K and at the three compositions x=0.33, 0.42 and 0.65. The calculations are based on density-functional theory in the local density approximation and on the pseudopotential plane-wave method. The reliability of the simulations is confirmed by detailed comparisons with very recent neutron diffraction results for the partial structure factors and radial distribution functions (RDF) of the stoichiometric liquid Ag2Se. The simulations show a dramatic change of the Se-Se RDF with increasing Se content. This change is due to the formation of Se clusters bound by covalent bonds, the Se-Se bond length being almost the same as in pure c-Se and l-Se. The clusters are predominantly chain-like, but for higher x a large fraction of 3-fold coordinated Se atoms is also found. It is shown that the equilibrium fractions of Se present as isolated atoms and in clusters can be understood on a simple charge-balance model based on an ionic interpretation. The Ag and Se diffusion coefficients both increase with Se content, in spite of the Se clustering. An analysis of the Se-Se bond dynamics reveals surprisingly short bond lifetimes of less than 1 ps. The changes in the density of states with composition arise directly from the formation of Se-Se covalent bonds. Results for the electronic conductivity obtained using the Kubo-Greenwood approximation are in adequate agreement with experiment for l-Ag2Se, but not for the high Se contents. Possible reasons for this are discussed.Comment: 14 pages, Revtex, 14 Postscript figures embedded in the tex
    corecore