36 research outputs found

    Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus

    Get PDF
    The discovery of a family of membrane water channel proteins called aquaporins, and the finding that aquaporin 1 was located in the choroid plexus, has prompted interest in the role of aquaporins in cerebrospinal fluid (CSF) production and consequently hydrocephalus. While the role of aquaporin 1 in choroidal CSF production has been demonstrated, the relevance of aquaporin 1 to the pathophysiology of hydrocephalus remains debated. This has been further hampered by the lack of a non-toxic specific pharmacological blocking agent for aquaporin 1. In recent times aquaporin 4, the most abundant aquaporin within the brain itself, which has also been shown to have a role in brain water physiology and relevance to brain oedema in trauma and tumours, has become an alternative focus of attention for hydrocephalus research. This review summarises current knowledge and concepts in relation to aquaporins, specifically aquaporin 1 and 4, and hydrocephalus. It also examines the relevance of aquaporins as potential therapeutic targets in hydrocephalus and other CSF circulation disorders

    Iodination of human thyroglobulin (Tg) alters its immunoreactivity. II. Fine specificity of a monoclonal antibody that recognizes iodinated Tg

    No full text
    In a previous investigation, we found that murine MoAb 42C3, raised against human Tg, recognized Tg differently depending upon its level of iodination of Tg. A possible explanation for this finding is that iodine is directly involved with the specific epitope recognized by MoAb 42C3. In the present study, we report that the binding of MoAb 42C3 to iodinated Tg is inhibited by T4, T3, reverse T3 (rT3), triiodothyroacetic acid (triac), diiodothyronine (T2), diiodotyrosine (DIT), but not by thyronine (T0) or tyrosine. The order of inhibition of these iodinated compounds is T4 > T3 > rT3 > triac > T2 > DIT. The MoAb 42C3 does not have the same specificity as the T3, T4-receptor since the order of binding of these iodinated compounds on the receptor differed from the order of their inhibition of this MoAb. Monoclonal antibody 42C3 also recognized non-iodinated Tg that was subsequently iodinated in vitro. It failed to recognize another protein, bovine serum albumin, that was iodinated in vitro by the same method. These results suggest that iodinated tyrosines and thyronines determine the binding specificity of MoAb 42C3. The inhibitory effects of these compounds on MoAb 42C3 depend on their iodine content as well as location of iodine in the aromatic ring

    Thyroglobulin as an autoantigen: what can we learn about immunopathogenicity from the correlation of antigenic properties with protein structure?

    No full text
    Autoantibodies against human thyroglobulin are a hallmark of autoimmune thyroid disease in humans, and are often found in normal subjects. Their pathogenic significance is debated. Several B-cell epitope-bearing peptides have been identified in thyroglobulin. They are generally located away from the cysteine-rich regions of tandem sequence repetition. It is possible that our current epitopic map is incomplete because of the difficulty that proteolytic and recombinant approaches have in restituting conformational epitopes based upon proper pairing between numerous cysteinyl residues. Furthermore, the homology of cysteine-rich repeats with a motif occurring in several proteins, endowed with antiprotease activity, suggests that these regions may normally escape processing and presentation to the immune system, and brings attention to the mechanisms, such as oxidative cleavage, by which such cryptic epitopes may be exposed. A number of T-cell epitope-bearing peptides, endowed with thyroiditogenic power in susceptible mice, were also identified. None of them was dominant, as none was able to prime in vivo lymph node cells that would proliferate or transfer autoimmune thyroiditis to syngeneic hosts, upon stimulation with intact thyroglobulin in vitro. More than half of them are located within the acetylcholinesterase-homologous domain of thyroglobulin, and overlap B-cell epitopes associated with autoimmune thyroid disease, while the others are located within cysteine-rich repeats. The immunopathogenic, non-dominant character of these epitopes also favours the view that the development of autoimmune thyroid disease may involve the unmasking of cryptic epitopes, whose exposure may cause the breaking of peripheral tolerance to thyroglobulin. Further research in this direction seems warranted
    corecore