26 research outputs found
Tractography-guided surgery of brain tumours: what is the best method to outline the corticospinal tract?
Background: Diffusion tensor imaging (DTI) is the imaging technique used in vivo to visualise white matter pathways. The cortico-spinal tract (CST) belongs to one of the most often delineated tracts preoperatively, although the optimal DTI method has not been established yet. Considering that various regions of interests (ROIs) could be selected, the reproducibility of CST tracking among different centres is low. We aimed to select the most reliable tractography method for outlining the CST for neurosurgeons.
Materials and methods: Our prospective study consisted of 32 patients (11 males, 21 females) with a brain tumour of various locations. DTI and T1-weighed image series were acquired prior to the surgery. To draw the CST, the posterior limb of the internal capsule (PLIC) and the cerebral peduncle (CP) were defined as two main ROIs. Together with these main ROIs, another four cortical endpoints were selected: the frontal lobe (FL), the supplementary motor area (SMA), the precentral gyrus (PCG) and the postcentral gyrus (POCG). Based on these ROIs, we composed ten virtual CSTs in DSI Studio. The fractional anisotropy, the mean diffusivity, the tracts’ volume, the length and the number were compared between all the CSTs. The degree of the CST infiltration, tumour size, the patients’ sex and age were examined.
Results: Significant differences in the number of tracts and their volume were observed when the PLIC or the CP stood as a single ROI comparing with the two- ROI method (all p < 0.05). The mean CST volume was 40054U (SD ± 12874) and the number of fibres was 259.3 (SD ± 87.3) when the PLIC was a single ROI. When the CP was a single ROI, almost a half of fibres (147.6; SD ± 64.0) and half of the CST volume (26664U; SD ± 10059U) was obtained (all p < 0.05). There were no differences between the various CSTs in terms of fractional anisotropy, mean diffusivity, the apparent diffusion coefficient, radial diffusivity and the tract length (p > 0.05). The CST was infiltrated by a growing tumour or oedema in 17 of 32 patients; in these cases, the mean and apparent diffusion of the infiltrated CST was significantly higher than in uncompromised CSTs (p = 0.04). CST infiltration did not alter the other analysed parameters (all p > 0.05).
Conclusions: A universal method of DTI of the CST was not developed. However, we found that the CP or the PLIC (with or without FL as the second ROI) should be used to outline the CST
Frontal aslant tract projections to the inferior frontal gyrus
Background: Frontal aslant tract (FAT) is a white matter bundle connecting the pre-supplementary motor area (pre-SMA) and the supplementary motor area (SMA) with the inferior frontal gyrus (IFG). The purpose of the present study was to evaluate the anatomical variability of FAT.
Materials and methods: Total number of fibres and the lateralisation index (LI) were calculated. We attempted to find factors contributing to the diversity of FAT regarding IFG terminations to the pars opercularis (IFG-Op) and to the pars triangularis (IFG-Tr). Magnetic resonance imaging of adult patients with diffusion tensor imaging (DTI) with total number of 98 hemispheres composed a cohort. V-shaped operculum was the most common (60.5%).
Results: Total number of FAT fibres had widespread and unimodal distribution (6 to 1765; median: 160). Left lateralisation was noted in 64.3% of cases and was positively correlated with total number of FAT fibres and the bundle projecting to IFG-Op (p < 0.01). LI correlated with total number of FAT fibres (r = 0.43, p < 0.01). FAT projected predominantly to IFG-Op (88.9%; 88 of 99). Only in 3 (3.1%) cases more fibres terminated in IFG-Tr than in IFG-Op. Total number of FAT fibres and number of fibres terminating at IFG-Op did not correlate with the ratio of fibre numbers: FAT/IFG-Op, FAT/IFG-Tr and IFG-Op/IFG-Tr (p > 0.05). The greater total number of fibres to IFG-Tr was, the higher were the ratios of IFG-Tr/ /FAT (r = 0.57, p < 0.01) and IFG-Tr/IFG-Op (r = 0.32, p = 0.04).
Conclusions: Among the IFG, the major termination of FAT is IFG-Op. Whereas the IFG-Tr projection seems to be related to the expansion of the entire FAT bundle regardless of side, domination and handedness. Nevertheless, FAT features a significant anatomical variability which cannot be explained in terms of DTI findings
The Side Population in Human Lung Cancer Cell Line NCI-H460 Is Enriched in Stem-Like Cancer Cells
Lung cancer is among the most lethal malignancies with a high metastasis and recurrence rate. Recent studies indicate that tumors contain a subset of stem-like cancer cells that possess certain stem cell properties. Herein, we used Hoechst 33342 dye efflux assay and flow cytometry to isolate and characterize the side population (SP) cells from human lung cancer cell line NCI-H460 (H460). We show that the H460 SP cells harbor stem-like cells as they can readily form anchorage-independent floating spheres, possess great proliferative potential, and exhibit enhanced tumorigenicity. Importantly, the H460 SP cells were able to self-renew both in vitro and in vivo. Finally, we show that the H460 SP cells preferentially express ABCG2 as well as SMO, a critical mediator of the Hedgehog (HH) signaling, which seems to play an important role in H460 lung cancer cells as its blockage using Cyclopamine greatly inhibits cell-cycle progression. Collectively, our results lend further support to the existence of lung cancer stem cells and also implicate HH signaling in regulating large-cell lung cancer (stem) cells
10Kin1day: A Bottom-Up Neuroimaging Initiative.
We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain
Blood-brain barrier permeability and physical exercise
Abstract In this narrative review, a theoretical framework on the crosstalk between physical exercise and blood-brain barrier (BBB) permeability is presented. We discuss the influence of physical activity on the factors affecting BBB permeability such as systemic inflammation, the brain renin-angiotensin and noradrenergic systems, central autonomic function and the kynurenine pathway. The positive role of exercise in multiple sclerosis and Alzheimer’s disease is described. Finally, the potential role of conditioning as well as the effect of exercise on BBB tight junctions is outlined. There is a body of evidence that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress and has anti-inflammatory effects. It improves endothelial function and might increase the density of brain capillaries. Thus, physical training can be emphasised as a component of prevention programs developed for patients to minimise the risk of the onset of neuroinflammatory diseases as well as an augmentation of existing treatment. Unfortunately, despite a sound theoretical background, it remains unclear as to whether exercise training is effective in modulating BBB permeability in several specific diseases. Further research is needed as the impact of exercise is yet to be fully elucidated