17 research outputs found

    Untersuchungen zur Signaltransduktion des tumorassoziierten Antigens EpCAM

    Get PDF

    A brief, patient- and proxy-reported outcome measure in advanced illness: Validity, reliability and responsiveness of the Integrated Palliative care Outcome Scale (IPOS)

    Get PDF
    Background:Few measures capture the complex symptoms and concerns of those receiving palliative care.Aim:To validate the Integrated Palliative care Outcome Scale, a measure underpinned by extensive psychometric development, by evaluating its validity, reliability and responsiveness to change.Design:Concurrent, cross-cultural validation study of the Integrated Palliative care Outcome Scale – both (1) patient self-report and (2) staff proxy-report versions. We tested construct validity (factor analysis, known-group comparisons, and correlational analysis), reliability (internal consistency, agreement, and test–retest reliability), and responsiveness (through longitudinal evaluation of change).Setting/participants:In all, 376 adults receiving palliative care, and 161 clinicians, from a range of settings in the United Kingdom and GermanyResults:We confirm a three-factor structure (Physical Symptoms, Emotional Symptoms and Communication/Practical Issues). Integrated Palliative care Outcome Scale shows strong ability to distinguish between clinically relevant groups; total Integrated Palliative care Outcome Scale and Integrated Palliative care Outcome Scale subscale scores were higher – reflecting more problems – in those patients with ‘unstable’ or ‘deteriorating’ versus ‘stable’ Phase of Illness (F = 15.1, p  0.60). Longitudinal validity in form of responsiveness to change is good.Conclusion:The Integrated Palliative care Outcome Scale is a valid and reliable outcome measure, both in patient self-report and staff proxy-report versions. It can assess and monitor symptoms and concerns in advanced illness, determine the impact of healthcare interventions, and demonstrate quality of care. This represents a major step forward internationally for palliative care outcome measurement

    Initial activation of EpCAM cleavage via cell-to-cell contact

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is frequently over-expressed in simple epithelia, progenitors, embryonic and tissue stem cells, carcinoma and cancer-initiating cells. Besides functioning as a homophilic adhesion protein, EpCAM is an oncogenic receptor that requires regulated intramembrane proteolysis for activation of its signal transduction capacity. Upon cleavage, the extracellular domain EpEX is released as a soluble ligand while the intracellular domain EpICD translocates into the cytoplasm and eventually into the nucleus in combination with four-and-a-half LIM domains protein 2 (FHL2) and β-catenin, and drives cell proliferation.</p> <p>Methods</p> <p>EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were investigated under varying density conditions using confocal laser scanning microscopy, immunoblotting, cell counting, and conditional cell systems.</p> <p>Results</p> <p>EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were dependent on adequate cell-to-cell contact. If cell-to-cell contact was prohibited EpCAM did not provide growth advantages. If cells were allowed to undergo contact to each other, EpCAM transmitted proliferation signals based on signal transduction-related cleavage processes. Accordingly, the pre-cleaved version EpICD was not dependent on cell-to-cell contact in order to induce <it>c-myc </it>and cell proliferation, but necessitated nuclear translocation. For the case of contact-inhibited cells, although cleavage of EpCAM occurred, nuclear translocation of EpICD was reduced, as were EpCAM effects.</p> <p>Conclusion</p> <p>Activation of EpCAM's cleavage and oncogenic capacity is dependent on cellular interaction (juxtacrine) to provide for initial signals of regulated intramembrane proteolysis, which then support signalling via soluble EpEX (paracrine).</p

    Effects of Plant Biomass, Plant Diversity, and Water Content on Bacterial Communities in Soil Lysimeters: Implications for the Determinants of Bacterial Diversity▿ †

    No full text
    Soils may comprise tens of thousands to millions of bacterial species. It is still unclear whether this high level of diversity is governed by functional redundancy or by a multitude of ecological niches. In order to address this question, we analyzed the reproducibility of bacterial community composition after different experimental manipulations. Soil lysimeters were planted with four different types of plant communities, and the water content was adjusted. Group-specific phylogenetic fingerprinting by PCR-denaturing gradient gel electrophoresis revealed clear differences in the composition of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Verrucomicrobia populations in soils without plants compared to that of populations in planted soils, whereas no influence of plant species composition on bacterial diversity could be discerned. These results indicate that the presence of higher plant species affects the species composition of bacterial groups in a reproducible manner and even outside of the rhizosphere. In contrast, the environmental factors tested did not affect the composition of Acidobacteria, Actinobacteria, Archaea, and Firmicutes populations. One-third (52 out of 160) of the sequence types were found to be specifically and reproducibly associated with the absence or presence of plants. Unexpectedly, this was also true for numerous minor constituents of the soil bacterial assemblage. Subsequently, one of the low-abundance phylotypes (beta10) was selected for studying the interdependence under particular experimental conditions and the underlying causes in more detail. This so-far-uncultured phylotype of the Betaproteobacteria species represented up to 0.18% of all bacterial cells in planted lysimeters compared to 0.017% in unplanted systems. A cultured representative of this phylotype exhibited high physiological flexibility and was capable of utilizing major constituents of root exudates. Our results suggest that the bacterial species composition in soil is determined to a significant extent by abiotic and biotic factors, rather than by mere chance, thereby reflecting a multitude of distinct ecological niches

    Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis

    No full text
    Glutamine fructose-6-phosphate amidotransferase (GFAT) is the key enzyme in the hexosamine pathway (HP) that produces uridine 5′-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), linking energy metabolism with posttranslational protein glycosylation. In Caenorhabditis elegans, we previously identified gfat-1 gain-of-function mutations that elevate UDP-GlcNAc levels, improve protein homeostasis, and extend lifespan. GFAT is highly conserved, but the gain-of-function mechanism and its relevance in mammalian cells remained unclear. Here, we present the full-length crystal structure of human GFAT-1 in complex with various ligands and with important mutations. UDP-GlcNAc directly interacts with GFAT-1, inhibiting catalytic activity. The longevity-associated G451E variant shows drastically reduced sensitivity to UDP-GlcNAc inhibition in enzyme activity assays. Our structural and functional data point to a critical role of the interdomain linker in UDP-GlcNAc inhibition. In mammalian cells, the G451E variant potently activates the HP. Therefore, GFAT-1 gain-of-function through loss of feedback inhibition constitutes a potential target for the treatment of age-related proteinopathies

    Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis

    No full text
    Glutamine fructose-6-phosphate amidotransferase (GFAT) is the key enzyme in the hexosamine pathway (HP) that produces uridine 5-diphospho-N-acetyl-d-glucosamine (UDP-GlcNAc), linking energy metabolism with posttranslational protein glycosylation. In Caenorhabditis elegans, we previously identified gfat-1 gain-of-function mutations that elevate UDP-GlcNAc levels, improve protein homeostasis, and extend lifespan. GFAT is highly conserved, but the gain-of-function mechanism and its relevance in mammalian cells remained unclear. Here, we present the full-length crystal structure of human GFAT-1 in complex with various ligands and with important mutations. UDP-GlcNAc directly interacts with GFAT-1, inhibiting catalytic activity. The longevity-associated G451E variant shows drastically reduced sensitivity to UDP-GlcNAc inhibition in enzyme activity assays. Our structural and functional data point to a critical role of the interdomain linker in UDP-GlcNAc inhibition. In mammalian cells, the G451E variant potently activates the HP. Therefore, GFAT-1 gain-of-function through loss of feedback inhibition constitutes a potential target for the treatment of age-related proteinopathies. p id=Par Mutations in the hexosamine pathway key enzyme glutamine fructose-6-phosphate amidotransferase (GFAT-1) improve protein quality control and extend C. elegans lifespan. Here the authors present the crystal structures of full-length human GFAT-1 alone and with bound ligands and perform activity assays, which show that gain-of-function in the longevity-associated G451E variant is caused by a loss of feedback regulation

    Protein kinase A controls the hexosamine pathway by tuning the feedback inhibition of GFAT-1

    No full text
    The hexosamine pathway (HP) is a key anabolic pathway whose product uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) is an essential precursor for glycosylation processes in mammals. It modulates the ER stress response and HP activation extends lifespan in Caenorhabditis elegans. The highly conserved glutamine fructose-6-phosphate amidotransferase 1 (GFAT-1) is the rate-limiting HP enzyme. GFAT-1 activity is modulated by UDP-GlcNAc feedback inhibition and via phosphorylation by protein kinase A (PKA). Molecular consequences of GFAT-1 phosphorylation, however, remain poorly understood. Here, we identify the GFAT-1 R203H substitution that elevates UDP-GlcNAc levels in C. elegans. In human GFAT-1, the R203H substitution interferes with UDP-GlcNAc inhibition and with PKA-mediated Ser205 phosphorylation. Our data indicate that phosphorylation affects the interactions of the two GFAT-1 domains to control catalytic activity. Notably, Ser205 phosphorylation has two discernible effects: it lowers baseline GFAT-1 activity and abolishes UDP-GlcNAc feedback inhibition. PKA controls the HP by uncoupling the metabolic feedback loop of GFAT-1. The glutamine fructose-6-phosphate amidotransferase 1 (GFAT-1) is the rate-limiting enzyme in the hexosamine pathway producing uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), an essential glycosylation precursor. Here, the authors dissect the mechanisms of GFAT-1 regulation by protein kinase A (PKA)-mediated phosphorylation

    Concentrations of EpCAM ectodomain as found in sera of cancer patients do not significantly impact redirected lysis and T-cell activation by EpCAM/CD3-bispecific BiTE antibody MT110

    No full text
    Ectodomains of target antigens for antibody-based therapies can be shed from the target cell surface and found in sera of patients. Shed ectodomains of therapeutic targets not only pose the risk of sequestering therapeutic antibodies but, in a multimeric form, of triggering T cell activation by bispecific antibodies binding to CD3 on T cells. Recently, epithelial cell adhesion molecule (EpCAM) has been shown to be activated by release of its ectodomain, called EpEX. Here, we show that only very low amounts of EpEX are detectable in sera of cancer patients. Among 100 cancer patient samples tested, only 17 (17%) showed serum levels of EpEX in excess of 0.05 ng/ml with highest EpEX concentrations of 5.29, 1.37 and 0.52 ng/ml. A recombinant form of human EpEX (recEpEX) was produced to assess its possible effect on redirected lysis and T cell activation by EpCAM/CD3-bispecific BiTE antibody MT110, currently being tested in patients with solid tumor malignancies. RecEpEX had a very minor effect on redirected lysis by MT110 with an approximate IC50 value of 3,000 ng/ml, which is a concentration close to three orders of magnitude higher than the highest EpEX concentration found in cancer patients. Concentrations of 30 ng/ml EpEX in combination with 250 ng/ml MT110 were minimally required to induce a detectable activation of CD4+ and CD8+ T cells. We conclude that soluble EpEX in sera of cancer patients is unlikely to pose an issue for the efficacy or safety of MT110, and perhaps other antibodies binding to N-terminal epitopes of EpCAM

    Glutamine Metabolism Controls Stem Cell Fate Reversibility and Long-Term Maintenance in the Hair Follicle

    Get PDF
    Stem cells reside in specialized niches that are critical for their function. Upon activation, hair follicle stem cells (HFSCs) exit their niche to generate the outer root sheath (ORS), but a subset of ORS progeny returns to the niche to resume an SC state. Mechanisms of this fate reversibility are unclear. We show that the ability of ORS cells to return to the SC state requires suppression of a metabolic switch from glycolysis to oxidative phosphorylation and glutamine metabolism that occurs during early HFSC lineage progression. HFSC fate reversibility and glutamine metabolism are regulated by the mammalian target of rapamycin complex 2 (mTORC2)-Akt signaling axis within the niche. Deletion of mTORC2 results in a failure to re-establish the HFSC niche, defective hair follicle regeneration, and compromised long-term maintenance of HFSCs. These findings highlight the importance of spatiotemporal control of SC metabolic states in organ homeostasis.Peer reviewe

    GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway

    No full text
    The hexosamine biosynthetic pathway (HBP) produces the essential metabolite UDP-GlcNAc and plays a key role in metabolism, health, and aging. The HBP is controlled by its rate-limiting enzyme glutamine fructose-6-phosphate amidotransferase (GFPT/GFAT) that is directly inhibited by UDP-GlcNAc in a feedback loop. HBP regulation by GFPT is well studied but other HBP regulators have remained obscure. Elevated UDP‑GlcNAc levels counteract the glycosylation toxin tunicamycin (TM) and thus we screened for TM resistance in haploid mouse embryonic stem cells (mESCs) using random chemical mutagenesis to determine alternative HBP regulation. We identified the N‑acetylglucosamine deacetylase AMDHD2 that catalyzes a reverse reaction in the HBP and its loss strongly elevated UDP-GlcNAc. To better understand AMDHD2, we solved the crystal structure and found that loss-of-function is caused by protein destabilization or interference with its catalytic activity. Finally, we show that mESCs express AMDHD2 together with GFPT2 instead of the more common paralog GFPT1. Compared with GFPT1, GFPT2 had a much lower sensitivity to UDP-GlcNAc inhibition, explaining how AMDHD2 loss-of-function resulted in HBP activation. This HBP configuration in which AMDHD2 serves to balance GFPT2 activity was also observed in other mESCs and, consistently, the GFPT2:GFPT1 ratio decreased with differentiation of human embryonic stem cells. Together, our data reveal a critical function of AMDHD2 in limiting UDP‑GlcNAc production in cells that use GFPT2 for metabolite entry into the HBP
    corecore