5 research outputs found

    Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors

    No full text
    Alkaline phosphatases such as PhoD and PhoX are important in organic phosphorus cycling in soil. We identified the key organisms harboring the phoD and phoX genes in soil and explored the relationships between environmental factors and the phoD- and phoX-harboring community structures across three land uses located in arid to temperate climates on two continents using 454-sequencing. phoD was investigated using recently published primers, and new primers were designed to study phoX in soil. phoD was found in 1 archaeal, 13 bacterial and 2 fungal phyla, and phoX in 1 archaeal and 16 bacterial phyla. Dominant phoD-harboring phyla were Actinobacteria, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes and Proteobacteria, while abundant phoX-harboring phyla were Acidobacteria, Actinobacteria, Chloroflexi, Planctomycetes, Proteobacteria and Verrucomicrobia. Climate, soil group, land use and soil nutrient concentrations were the common environmental drivers of both community structures. In addition, the phoX-harboring community structure was affected by pH. Despite differences in environmental factors, the dominant phyla in the phoD-harboring community remained similar in all samples, while the composition of phoX differed substantially between the samples. This study shows that the composition of phoD and phoX is governed by the same environmental drivers but that phoD and phoX occur partly in different phyla

    Total and active microbial communities and phoD as affected by phosphate depletion and pH in soil

    No full text
    Background and Aims Soil microbial communities contribute to organic phosphorus cycling in a variety of ways, including secretion of the PhoD alkaline phosphatase. We sampled a long-term grassland fertilization trial in Switzerland characterized by a natural pH gradient. We examined the effects of phosphate depletion and pH on total and active microbial community structures and on the structure and composition of the total and active phoD-harboring community. Methods Archaeal, bacterial and fungal communities were investigated using T-RFLP and phoD-harboring members of these communities were identified by 454-sequencing. Results Phosphate depletion decreased total, resin-extractable and organic phosphorus and changed the structure of all active microbial communities, and of the total archaeal and phoD-harboring communities. Organic carbon, nitrogen and phosphorus increased with pH, and the structures of all total and active microbial communities except the total fungal community differed between the two pH levels. phoD-harboring members were affiliated to Actinomycetales, Bacilliales, Gloeobacterales, Planctomycetales and Rhizobiales. Conclusions Our results suggest that pH and associated soil factors are important determinants of microbial and phoD-harboring community structures. These associated factors include organic carbon and total nitrogen, and to a lesser degree phosphorus status, and active communities are more responsive than total communities. Key players in organic P mineralization are affiliated to phyla that are known to be important in organic matter decomposition.ISSN:0032-079XISSN:1573-503
    corecore