300 research outputs found

    Serum Biochemistry and Inflammatory Cytokines in Racing Endurance Sled Dogs With and Without Rhabdomyolysis

    Get PDF
    Serum muscle enzymes in endurance sled dogs peak within 2–4 days of racing. The object of this study was to compare mid-race serum chemistry profiles, select hormones, markers of inflammation, and the acute phase response in dogs that successfully completed half of the 2015 Yukon Quest sled dog race to their pre-racing samples (n = 14), as well as mid-race samples of successful dogs to those who developed clinical exertional rhabdomyolysis (ER) (n = 5). Concentrations of serum phosphorus in ER dogs were significantly elevated compared to healthy dogs (median 5.5 vs. 4.25 mg/dL, P < 0.01) at mid race. ALT, AST, and CK show a significant increase from pre-race baseline to mid-race chemistries (P < 0.01), with more pronounced increases in dogs with ER compared to healthy racing dogs (CK- median 46,125 vs. 1,743 U/L; P < 0.01). Potassium concentrations were significantly decreased from pre-race baselines in all dogs (median 5.1 vs. 4.5 mEq/L; P < 0.01), and even lower in dogs with ER (median 3.5 mEq/L; P < 0.01) mid-race. No changes in serum pro-inflammatory cytokine concentrations were noted in any groups of dogs. C-reactive protein was elevated in both groups of dogs, but significantly higher in those with ER compared with healthy dogs mid-race (median 308 vs. 164 ug/mL; P < 0.01). Healthy dogs may have CK elevations over 10,000 U/L, and dogs with ER were over 30,000 U/L. Although potassium decreases in healthy endurance sled dogs during racing, it remains in the normal laboratory reference range; however ER dog potassium levels drop further to the point of hypokalemia. Lastly increases in CRP may be reflective of a physiological response to exercise over the course of a race; however high CRP in ER dogs may be capturing an early acute phase response

    WHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-8 2011 mooring turnaround cruise report

    Get PDF
    Note: author "Ludovic Bariteau" is incorrectly listed as "Bariteau Ludovic" on the Cover and Title Page.The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the HOT program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. This report documents recovery of the seventh WHOTS mooring (WHOTS-7) and deployment of the eighth mooring (WHOTS-8). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system was installed on the WHOTS-8 buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. A set of radiometers were installed in cooperation with Sam Laney at WHOI. The WHOTS mooring turnaround was done on the NOAA ship Hi’ialakai by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 5 July and 13 July 2011. Operations began with deployment of the WHOTS-8 mooring on 6 July. This was followed by meteorological intercomparisons and CTDs. Recovery of WHOTS-7 took place on 11 July 2011. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA090AR4320129 and the Cooperative Institute for the North Atlantic Region (CINAR)

    Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen

    Get PDF
    AbstractCoastal upwelling regimes are some of the most productive ecosystems in the ocean but are also among the most vulnerable to ocean acidification (OA) due to naturally high background concentrations of CO2. Yet our ability to predict how these ecosystems will respond to additional CO2 resulting from anthropogenic emissions is poor. To help address this uncertainty, researchers perform manipulative experiments where biological responses are evaluated across different CO2 partial pressure (pCO2) levels. In upwelling systems, however, contemporary carbonate chemistry variability remains only partly characterized and patterns of co-variation with other biologically important variables such as temperature and oxygen are just beginning to be explored in the context of OA experimental design. If co-variation among variables is prevalent, researchers risk performing OA experiments with control conditions that are not experienced by the focal species, potentially diminishing the ecological relevance of the experiment. Here, we synthesized a large carbonate chemistry dataset that consists of carbonate chemistry, temperature, and oxygen measurements from multiple moorings and ship-based sampling campaigns from the California Current Ecosystem (CCE), and includes fjord and tidal estuaries and open coastal waters. We evaluated patterns of pCO2 variability and highlight important co-variation between pCO2, temperature, and oxygen. We subsequently compared environmental pCO2–temperature measurements with conditions maintained in OA experiments that used organisms from the CCE. By drawing such comparisons, researchers can gain insight into the ecological relevance of previously published OA experiments, but also identify species or life history stages that may already be influenced by contemporary carbonate chemistry conditions. We illustrate the implications co-variation among environmental variables can have for the interpretation of OA experimental results and suggest an approach for designing experiments with pCO2 levels that better reflect OA hypotheses while simultaneously recognizing natural co-variation with other biologically relevant variables

    Dynamic Computed Tomography Angiography for capturing vessel wall motion:A phantom study for optimal image reconstruction

    Get PDF
    Background Reliably capturing sub-millimeter vessel wall motion over time, using dynamic Computed Tomography Angiography (4D CTA), might provide insight in biomechanical properties of these vessels. This may improve diagnosis, prognosis, and treatment decision making in vascular pathologies. Purpose The aim of this study is to determine the most suitable image reconstruction method for 4D CTA to accurately assess harmonic diameter changes of vessels. Methods An elastic tube (inner diameter 6 mm, wall thickness 2 mm) was exposed to sinusoidal pressure waves with a frequency of 70 beats-per-minute. Five flow amplitudes were set, resulting in increasing sinusoidal diameter changes of the elastic tube, measured during three simulated pulsation cycles, using ECG-gated 4D CTA on a 320-detector row CT system. Tomographic images were reconstructed using one of the following three reconstruction methods: hybrid iterative (Hybrid-IR), model-based iterative (MBIR) and deep-learning based (DLR) reconstruction. The three reconstruction methods where based on 180 degrees (half reconstruction mode) and 360 degrees (full reconstruction mode) raw data. The diameter change, captured by 4D CTA, was computed based on image registration. As a reference metric for diameter change measurement, a 9 MHz linear ultrasound transducer was used. The sum of relative absolute differences (SRAD) between the ultrasound and 4D CTA measurements was calculated for each reconstruction method. The standard deviation was computed across the three pulsation cycles. Results MBIR and DLR resulted in a decreased SRAD and standard deviation compared to Hybrid-IR. Full reconstruction mode resulted in a decreased SRAD and standard deviations, compared to half reconstruction mode. Conclusions 4D CTA can capture a diameter change pattern comparable to the pattern captured by US. DLR and MBIR algorithms show more accurate results than Hybrid-IR. Reconstruction with DLR is &gt;3 times faster, compared to reconstruction with MBIR. Full reconstruction mode is more accurate than half reconstruction mode.</p

    The development of sentence-interpretation strategies in monolingual German-learning children with and without specific language impairment

    Get PDF
    Previous research on sentence comprehension conducted with German-learning children has concentrated on the role of case marking and word order in typically developing children. This paper compares, the performance of German-learning children with language impairment (age 4-6 years) and without language impairment (aged 2-6, 8-9 years) in two experiments that systematically vary the cues animacy, case marking; word-order, and subject-verb agreement. The two experiments differ with regard to the choice of case marking: in the first it is distinct but in the second it is neutralized. The theoretical framework is the competition model developed by Bates and Mac Whinney and their collaborators, a variant of the parallel distributed processing models. It is hypothesized that children of either population first appreciate the cue animacy that can be processed locally, that is, "on the spot," before they turn to more distributed cues leading ultimately up to subject-verb agreement, which presupposes the comparison of various constituents before an interpretation can be established. Thus agreement is more "costly" in processing than animacy or the (more) local cue initial NP. In experiment I with unambiguous case markers it is shown that the typically developing children proceed from animacy to the nominative (predominantly in coalition with the initial NP) to agreement, while in the second experiment with ambiguous case markers these children turn from animacy to the initial NP and then to agreement. The impaired children also progress from local to distributed cues. Yet, in contrast to the control group, they do not acknowledge the nominative in coalition with the initial NP in the first experiment but only in support of agreement. However, although they do not seem to appreciate distinct case markers to any large extent in the first experiment, they are irritated if such distinctions are lacking: in experiment II all impaired children turn to. animacy (some in coalition with the initial NP and/or particular word orders). In the discussion, the relationship between short-term memory and processing as well as the relationship between production and comprehension of case markers and agreement are addressed. Further research is needed to explore in more detail "cue costs" in sentence comprehension

    Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 5065-5083, doi:10.5194/bg-13-5065-2016.One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of preindustrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with preindustrial conditions; however, present-day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag < 1.8) and Crassostrea gigas (Ωarag < 2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag < 1.6). At the most variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag =  1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all patterns of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.The CO2 and ocean acidification observations were funded by NOAA’s Climate Observation Division (COD) in the Climate Program Office and NOAA’s Ocean Acidification Program. The maintenance of the Stratus and WHOTS Ocean Reference Stations were also supported by NOAA COD (NA09OAR4320129). Additional support for buoy equipment, maintenance, and/or ancillary measurements was provided by NOAA through the US Integrated Ocean Observing System office: for the La Parguera buoy under a Cooperative Agreement (NA11NOS0120035) with the Caribbean Coastal Ocean Observing System, for the Chá b˘a buoy under a Cooperative Agreement (NA11NOS0120036) with the Northwest Association of Networked Ocean Observing System, for the Gray’s Reef buoy under a Cooperative Agreement (NA11NOS0120033) with the Southeast Coastal Ocean Observing Regional Association, and for the Gulf of Main buoy under a Cooperative Agreement (NA11NOS0120034) with the Northeastern Regional Association of Coastal and Ocean Observing Systems

    OECD principles on water governance in practice:an assessment of existing frameworks in Europe, Asia-Pacific, Africa and South America

    Get PDF
    Through the lens of the 12 OECD Principles on Water Governance, this article examines six water resources and water services frameworks in Europe, Asia-Pacific, Africa and South America to understand enhancing and constraining contextual factors. Qualitative and quantitative methods are used to analyze each framework against four criteria: alignment; implementation; on-ground results; and policy impact. Four main target areas are identified for improving water governance: policy coherence; financing; managing trade-offs; and ensuring integrity and transparency by all decision makers and stakeholders. Suggestions are presented to support practical implementation of the principles through better government action and stakeholder involvement.No Full Tex

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed
    corecore