3 research outputs found

    Distinctive Left-Sided Distribution of Adrenergic-Derived Cells in the Adult Mouse Heart

    Get PDF
    Adrenaline and noradrenaline are produced within the heart from neuronal and non-neuronal sources. These adrenergic hormones have profound effects on cardiovascular development and function, yet relatively little information is available about the specific tissue distribution of adrenergic cells within the adult heart. The purpose of the present study was to define the anatomical localization of cells derived from an adrenergic lineage within the adult heart. To accomplish this, we performed genetic fate-mapping experiments where mice with the cre-recombinase (Cre) gene inserted into the phenylethanolamine-n-methyltransferase (Pnmt) locus were cross-mated with homozygous Rosa26 reporter (R26R) mice. Because Pnmt serves as a marker gene for adrenergic cells, offspring from these matings express the β-galactosidase (βGAL) reporter gene in cells of an adrenergic lineage. βGAL expression was found throughout the adult mouse heart, but was predominantly (89%) located in the left atrium (LA) and ventricle (LV) (p<0.001 compared to RA and RV), where many of these cells appeared to have cardiomyocyte-like morphological and structural characteristics. The staining pattern in the LA was diffuse, but the LV free wall displayed intermittent non-random staining that extended from the apex to the base of the heart, including heavy staining of the anterior papillary muscle along its perimeter. Three-dimensional computer-aided reconstruction of XGAL+ staining revealed distribution throughout the LA and LV, with specific finger-like projections apparent near the mid and apical regions of the LV free wall. These data indicate that adrenergic-derived cells display distinctive left-sided distribution patterns in the adult mouse heart

    Cross-talk of retinoic acid and adrenergic hormone signaling may influence development of cardiac conduction and rhythmicity in utero

    Get PDF
    Stress hormones, adrenaline and noradrenaline, have been shown to be critical for heart development. Mice lacking dopamine greek lower case letter beta]-hydroxylase (Dbh), an enzyme responsible for synthesis of these adrenergic hormones, die during mid-gestation due to cardiac failure. Prior research showed that adrenergic cells are found within the electrical conduction system of the heart, and adrenergic deficiency leads to slowed cardiac conduction during embryogenesis. Microarray analysis of wild-type (Dbh+/+) and knockout (Dbh-/-) mouse hearts revealed significant differences in expression of retinoic acid (RA) signaling genes. RA signaling has also been shown to be critical for heart development. These data suggest that heart failure due to adrenergic deficiency may be dependent upon RA signaling. This led to the hypothesis that adrenergic hormones promote the development of the electrical conduction system through modulation of RA signaling. To test this, embryonic mouse hearts were cultured with LE 135, a RA receptor blocker. Heart rate, arrhythmic index (AI) and conduction time were measured. Under these conditions there was a marked increase in arrhythmias. Hearts treated with LE 135 showed a mean AI of 0.232±0.057 after 24 hours of treatment while when untreated had an AI of 0.083±0.028 (p\u3c0.05;n=15). In contrast, there was no significant change in heart rate or conduction speed after 24 hours with or without the retinoic acid receptor blocker. To determine if adrenergic stimulus influences retinoic acid response, an established RA-sensitive reporter cell line was employed. These F9-RARE-LacZ cells were treated with forskolin (cAMP regulator) and isoproterenol (greek lower case letter beta]-agonist) to measure changes in RA signaling. Evaluation of RA signaling showed an increase in retinoic acid responsiveness when treated with an adrenergic signaling agonist.; These results suggest that proper retinoic acid signaling is essential for maintaining cardiac rhythmicity during embryonic development and adrenergic stimulation can influence this response
    corecore