35 research outputs found

    CMOS compatible all-silicon TM pass polarizer based on highly doped silicon waveguide

    Get PDF
    We propose and analyze via simulation a novel approach to implement a complementary metal-oxide-semiconductor compatible and high extinction ratio transverse magnetic pass polarizer on the silicon-on-insulator platform with a 340 nm thick silicon core. The TM-pass polarizer utilizes a highly doped p-silicon waveguide as the transverse hybrid plasmonic waveguide. We observed an extinction ratio of 30.11 dB and an insertion loss of 3.08 dB for a device length of 15 µm. The fabrication process of the proposed TM-pass polarizer is simpler compared to the state-of-the-art since it only uses silicon waveguides and does not require any special material or feature size

    Broadband all-silicon hybrid plasmonic TM-pass polarizer using bend waveguides

    Get PDF
    A complementary–metal–oxide semiconductor (CMOS) compatible all-silicon TM-pass polarizer using plasmonic bends is proposed. To simplify the fabrication and be compatible with the CMOS process, we employ only two materials: silicon and silicon dioxide. Highly doped silicon is used to support the plasmons. We obtain an extinction ratio and an insertion loss of 45.4 and 1.7 dB, respectively, at 1550 nm and a maximum extinction ratio of 58 dB. This is the highest reported extinction ratio for a TM-pass polarizer to the best of our knowledge. Furthermore, we achieved >20 dB of extinction ratio and <2 dB of insertion loss over 72 nm bandwidth for a device footprint <8.8 × 5.4 μm2. To achieve this, we exploit the properties of tight bends in plasmonic waveguides. Another advantage of the device is that it is robust against fabrication variations

    CMOS-compatible multi-band plasmonic TE-pass polarizer

    Get PDF
    A CMOS-compatible plasmonic TE-pass polarizer capable of working in the O, E,S, C, L, and U bands is numerically analyzed. The device is based on an integrated hybrid plasmonic waveguide (HPW) with a segmented metal design. The segmented metal will avoid the propagation of the TM mode, confined in the slot of the HPW, while the TE fundamental mode will pass. The TE mode is not affected by the metal segmentation since it is confined in the core of the HPW. The concept of the segmented metal can be exploited in a plasmonic circuit with HPWs as the connecting waveguides between parts of the circuit and in a silicon photonics circuit with strip or slab waveguides connecting the different parts of the circuit. Using 3D FDTD simulations, it is shown that for a length of 5.5 μm the polarization extinction ratios are better than 20 dB and the insertion losses are less than 1.7dB over all the optical communication bands

    A CMOS compatible ultracompact silicon photonic optical add-drop multiplexer with misaligned Sidewall Bragg gratings

    Get PDF
    We experimentally and via simulations demonstrate ultracompact single-stage and cascaded optical add-drop multiplexers using misaligned sidewall Bragg grating in a Mach-Zehnder interferometer for the silicon-on-insulator platform. The single-stage configuration has a device footprint of 400 μm × 90 μm, and the cascaded configuration has a footprint of 400 μm × 125 μm. The proposed designs have 3-dB bandwidths of 6 nm and extinction ratios of 25 dB and 51 dB, respectively, and have been fabricated for the transverse electric mode. A minimum lithographic feature size of 80 nm is used in our design, which is within the limitation of 193 nm deep ultraviolet lithography

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Silicon photonic devices and circuits for optical communication applications

    No full text
    Emerging applications such as cloud-based storage services, high definition streaming services, machine-to-machine communications, and 5G radio networks are fueling the need for faster and bandwidth-efficient optical networks. The requirements of these applications include increased capacity, and reduced cost, power consumption, footprint, and complexity. Therefore, there is a growing trend in developing integrated optoelectronic devices to meet the above mentioned requirements. Specifically, the silicon-on-insulator (SOI) platform has drawn huge research interest due to its low power operation, dense integration, and low-cost fabrication with relatively high yield using the existing complementary-metal-oxide-semiconductor (CMOS) foundries. Consequently, silicon photonics has recently entered the production phase of the technology development cycle. This thesis presents several silicon photonic devices and circuits for applications in different segments of the optical networks.In the first part of the thesis, we report several passive silicon photonic devices based on Bragg gratings, interference, and doping. First, two configurations (single-stage and cascaded) of the optical add-drop multiplexers (OADMs) are presented using Bragg gratings in a Mach-Zehnder interferometer. The single-stage and the cascaded OADMs achieved extinction ratios (ERs) of 25 and 51 dB, respectively. Second, we present two types of the transversely coupled Fabry-Perot resonators using Bragg gratings and loop mirrors. The Bragg grating-based designs offer maximum ER of 37.3 dB and maximum Q-factor of 23642 while the loop mirror-based designs offer maximum ER of 18.1 dB and maximum Q-factor of 28086. Third, we demonstrate a 120° optical hybrid using 3x3 multimode interference (MMI) coupler. The hybrid demonstrates measured excess loss of &lt;2.4 dB over 60 nm and phase deviations of ≤10° over 80 nm bandwidths. Finally, we report a hybrid plasmonic transverse magnetic (TM)-pass polarizer using highly doped silicon instead of metals achieving an ER of 30.1 dB and an insertion loss (IL) of 3.1 dB with a length of 15 μm near 1550 nm wavelength.In the last part of the thesis, we present bench-top and integrated solutions for applications in the high-speed passive optical networks (PONs). First, we report a bench-top simplified coherent receiver based on 120° hybrid using 4-level pulse amplitude modulation (PAM-4). This allows the use of low bandwidth optoelectronic components to achieve higher bit rate (e.g., 10G component for 25 Gb/s bit rate). Using the bulk optics based receiver we obtained 25 Gb/s PAM-4 transmission over 21 km of single-mode fiber (SMF) with a receiver sensitivity of -14.5 dBm. Second, we demonstrate a fully-integrated 120° hybrid based simplified coherent receiver on SOI achieving a sensitivity of -20.3 dBm after 21 km of propagation of 25 Gb/s PAM-2 signal. Third, the performance of the integrated coherent receiver is improved further by using a better transmitter and simple digital signal processing (DSP) at the receiver. We achieved -16.6 dBm of receiver sensitivity with 25 Gb/s (12.5 GBaud) PAM-4 after 21 km without any dispersion compensation and receiver equalizer, and -11.6 dBm of receiver sensitivity with 50 Gb/s (25 GBaud) PAM-4 after 21 km using 31-tap linear feed-forward equalizer (FFE) at the receiver.Les applications émergentes telles que les services de stockage en nuage, les services de streaming haute définition, les communications entre ordinateurs et les réseaux radio 5G sont des alimentant le besoin de réseaux optiques plus rapides et efficaces en bande passante. Les exigences de ces applications incluent une capacité accrue et une réduction des coûts, de la consommation d'énergie, de l'encombrement et de la complexité. Par conséquent, il existe une tendance croissante à développer des dispositifs optoélectroniques intégrés pour répondre aux exigences susmentionnées. Plus précisément, la plate-forme silicium sur isolant (SOI) a suscité un intérêt considérable en matière de recherche en raison de son fonctionnement à faible puissance, de son intégration dense et de sa fabrication à faible coût avec un rendement relativement élevé grâce aux fonderies existantes CMOS. En conséquence, la photonique sur silicium a récemment atteint la phase de production du cycle de développement technologique. Cette thèse présente plusieurs dispositifs et circuits photoniques en silicium pour des applications dans différents segments des réseaux optiques.Dans la première partie de la thèse, nous rapportons plusieurs dispositifs photoniques passifs au silicium basés sur les réseaux de Bragg, les interférences et le dopage. Premièrement, deux configurations (à une étape et en cascade) des multiplexeurs optiques add-drop (OADM) sont présentées à l'aide de réseaux de Bragg dans un interféromètre de Mach-Zehnder. Les OADM à une étape et en cascade ont atteint des taux d'extinction (ER) de 25 et 51 dB, respectivement. Deuxièmement, nous présentons deux types de résonateurs Fabry-Perot à couplage transversal utilisant des réseaux de Bragg et des miroirs à boucle. Les conceptions à base de réseau de Bragg offrent un ER maximal de 37,3 dB et un facteur Q maximal de 23642, tandis que les conceptions à base de miroirs en boucle offrent un ER maximal de 18,1 dB et un facteur Q maximal de 28086. Troisièmement, nous démontrons un hybride optique à 120 ° en utilisant 3 x 3 coupleur d'interférence multimode (MMI). L'hybride présente une perte d'excès mesurée &lt;2,4 dB sur 60 nm et des écarts de phase ≤ 10 ° sur des largeurs de bande de 80 nm. Enfin, nous rapportons un polariseur hybride transverse magnétique plasmonique (TM) utilisant du silicium hautement dopé au lieu de métaux atteignant un ER de 30,1 dB et une perte d’insertion (IL) de 3,1 dB avec une longueur de 15 µm aux alentours de 1550 nm.Dans la dernière partie de la thèse, nous présentons des solutions intégrées et de référence pour des applications dans les réseaux optiques passifs à grande vitesse (PON). Tout d'abord, nous rapportons un récepteur cohérent simplifié de table basé sur un hybride à 120 ° utilisant une modulation d'amplitude à 4 niveaux (PAM-4). Cela permet l'utilisation de composants optoélectroniques à faible bande passante pour atteindre un débit binaire plus élevé (par exemple, composant 10G pour un débit binaire de 25 Gb / s). En utilisant le récepteur basé optique en vrac, nous avons obtenu une transmission PAM-4 à 25 Gb / s sur 21 km de fibre monomode (SMF) avec une sensibilité de récepteur de -14,5 dBm. Deuxièmement, nous démontrons un récepteur cohérent simplifié basé sur l'hybride hybride à 120 ° entièrement intégré, atteignant une sensibilité de -20,3 dBm après 21 km de propagation du signal PAM-2 à 25 Gb / s. Troisièmement, les performances du récepteur cohérent intégré sont encore améliorées en utilisant un meilleur émetteur et un simple traitement du signal numérique (DSP) au niveau du récepteur. Nous avons atteint une sensibilité du récepteur de -16,6 dBm avec PAM-4 à 25 Gb / s (12,5 Gbaud) après 21 km sans compensation de dispersion ni égaliseur au niveau du récepteur, et une sensibilité de récepteur de -11,6 dBm avec PAM-4 de 50 Gb / s (25 Gbaud) après 21 km, en utilisant l’égaliseur linéaire à 31-tap de correction avancée (FFE) au niveau du récepteu

    Effect of beam parameters on the space charge wave modes in slow wave structures with semi-circular and trapezoidal corrugation

    No full text
    Corrugated waveguide with sinusoidal shape has long been used as slow wave structure (SWS) in backward wave oscillators (BWOs). Alternative SWSs with arbitrary geometries such as trapezoidal and semi-circular have drawn the attention of the researchers recently to be used as interaction regions in BWOs. In this work, the zero and non-zero beam dispersion characteristics of the axisymmetric transverse magnetic (TM) modes of semi-circularly and trapezoidally corrugated SWS (SCCSWS and TCSWS) have been studied numerically. The effect of variation of the electron beam parameters such as beam energy, current and radius on space charge wave modes (SCWM) and temporal growth rate (TGR) has also been investigated rigorously. The simulation results provide detail information regarding the unstable region where the resonant interaction occurs which is the requirement for microwave generation

    Numerical study of the dispersion characteristics of a semi-circularly corrugated slow wave structure

    No full text
    The dispersion characteristics of the axisymmetric transverse magnetic (TM) modes of a semi-circularly corrugated periodic metallic slow wave structure (SCCSWS) have been analysed numerically by approximating the axial profile of the SWS using Fourier series. The theoretical results and some of their representative experimental counterpart revealed that, instead of using complex boundary conditions, the Fourier approximation of the axial profile can be used in deriving the dispersion relation using linear Rayleigh-Fourier (R-F) theory. An analytical equation has been derived in order to determine the Fourier constants of the approximated axial profile. Numerical technique has also been employed to calculate the Fourier constants. The dispersion relation for the SCCSWS is analysed for the cold structure which is characterized by the real value of frequency and wavenumber. The dispersion characteristics of the fundamental as well as higher order TM modes have been calculated using Fourier constants obtained by both analytical and numerical techniques. The SCCSWS analysed in this paper can be implemented in real experiments for the generation of high-power microwaves

    Temporal growth rate study of a high power backward wave oscillator with semi-circularly corrugated slow wave structure

    No full text
    The dispersion properties and the temporal growth rate (TGR) of a high power backward wave oscillator (BWO) with a cylindrical metallic slow wave structure with semi-circular corrugation (SCCSWS) driven by an intense relativistic electron beam (IREB) are studied numerically. The IREB is assumed to be guided axially by an infinitely strong magnetic field. The semi-circular axial profile of the SWS is approximated by Fourier series and the study is carried out utilizing linear Rayleigh-Fourier (R-F) theory. The Fourier constants of the axial profile are determined numerically. The dispersion equation is solved numerically for the beam energy of 80–660 kV, beam current of 0.1–1.0 kA. When an electron beam with sufficient energy and current to produce instability propagates through the SWS, microwave radiation is generated. TGR which is obtained from the imaginary value of frequency and wavenumber can be used to qualitatively estimate the strength of the microwave radiation. The periodicity of the axial profile of SCCSWS is varied and the TGR for each case has been calculated by varying the beam parameters for TM01 mode. The proposed structure is comparatively easy to be fabricated and expected to be useful in BWO devices for generating high power microwaves for different applications
    corecore