15 research outputs found
Human pancreatic islet transplantation: an update and description of the establishment of a pancreatic islet isolation laboratory
Type 1 diabetes mellitus (T1DM) is associated with chronic complications that lead to high morbidity and mortality rates in young adults of productive age. Intensive insulin therapy has been able to reduce the likelihood of the development of chronic diabetes complications. However, this treatment is still associated with an increased incidence of hypoglycemia. In patients with "brittle T1DM", who have severe hypoglycemia without adrenergic symptoms (hypoglycemia unawareness), islet transplantation may be a therapeutic option to restore both insulin secretion and hypoglycemic perception. The Edmonton group demonstrated that most patients who received islet infusions from more than one donor and were treated with steroid-free immunosuppressive drugs displayed a considerable decline in the initial insulin independence rates at eight years following the transplantation, but showed permanent C-peptide secretion, which facilitated glycemic control and protected patients against hypoglycemic episodes. Recently, data published by the Collaborative Islet Transplant Registry (CITR) has revealed that approximately 50% of the patients who undergo islet transplantation are insulin independent after a 3-year follow-up. Therefore, islet transplantation is able to successfully decrease plasma glucose and HbA1c levels, the occurrence of severe hypoglycemia, and improve patient quality of life. The goal of this paper was to review the human islet isolation and transplantation processes, and to describe the establishment of a human islet isolation laboratory at the Endocrine Division of the Hospital de ClÃnicas de Porto Alegre - Rio Grande do Sul, Brazil
Serum undercarboxylated osteocalcin correlates with hemoglobin A1c in children with recently diagnosed pediatric diabetes
Background Osteocalcin (OC), a hormone secreted by osteoblasts, improves beta-cell function in vitro and in vivo. We aimed to understand the relationship between OC and hemoglobin A1c (HbA1c) in pediatric diabetes. Methods Children (n = 70; mean [SD] age = 11.8 years [3.1]; 34.3% non-Hispanic white, 46.3% Hispanic, 14.9% African-American, 4.5% other) newly diagnosed with diabetes (69.1% type 1 diabetes [T1D], 30.9% type 2 diabetes [T2D]) were studied. We collected clinical data at diagnosis and first clinical visit (V1) 9 weeks later (interquartile range [IQR] = 7.9-12.0). (Serum undercarboxylated OC (uOC) and carboxylated OC (cOC) were measured 7.0 weeks (IQR 4.3-8.9) after diagnosis. Results Mean (SD) uOC was 20.3 (19.6) ng/mL, cOC 29.7 (13.7) ng/mL and u/cOC 0.68 (0.81). uOC, cOC, or u/cOC were not different by gender, race/ethnicity, age, diabetes type, BMI percentile, or random C-peptide, glucose or HbA1c at diagnosis. However, among 61 children with V1 within 4 months of diagnosis, uOC was higher in those with V1 HbA1c < 7.5% (HbA1c < 58 mmol/mol) (uOC=33.1 [22.0]) compared with children with HbA1c ≥ 7.5% (uOC=17.4 [2.3], P = .0004). The difference was larger among patients with T2D (34.6 and 4.7 ng/mL, respectively, P = .0001) than T1D (T1D) (32.2 and 19.3, P = .0169), and in males (36.1 and 17.4, P = .018) than females (27.6 and 17.3, P = .072). Analysis for u/cOC were similar while there were no differences in cOC. uOC was inversely correlated with HbA1c at V1 (Spearman’s rho = −0.29, P = .02). Conclusion Our findings suggest that serum uOC is inversely related to HbA1c shortly after diagnosis of pediatric diabetes. This potentially modifiable factor of glucose metabolism warrants further studies.</p
Serum undercarboxylated osteocalcin correlates with hemoglobin A1c in children with recently diagnosed pediatric diabetes
Background
Osteocalcin (OC), a hormone secreted by osteoblasts, improves beta-cell function in vitro and in vivo. We aimed to understand the relationship between OC and hemoglobin A1c (HbA1c) in pediatric diabetes.
Methods
Children (n = 70; mean [SD] age = 11.8 years [3.1]; 34.3% non-Hispanic white, 46.3% Hispanic, 14.9% African-American, 4.5% other) newly diagnosed with diabetes (69.1% type 1 diabetes [T1D], 30.9% type 2 diabetes [T2D]) were studied. We collected clinical data at diagnosis and first clinical visit (V1) 9 weeks later (interquartile range [IQR] = 7.9-12.0). (Serum undercarboxylated OC (uOC) and carboxylated OC (cOC) were measured 7.0 weeks (IQR 4.3-8.9) after diagnosis.
Results
Mean (SD) uOC was 20.3 (19.6) ng/mL, cOC 29.7 (13.7) ng/mL and u/cOC 0.68 (0.81). uOC, cOC, or u/cOC were not different by gender, race/ethnicity, age, diabetes type, BMI percentile, or random C-peptide, glucose or HbA1c at diagnosis. However, among 61 children with V1 within 4 months of diagnosis, uOC was higher in those with V1 HbA1c
Conclusion
Our findings suggest that serum uOC is inversely related to HbA1c shortly after diagnosis of pediatric diabetes. This potentially modifiable factor of glucose metabolism warrants further studies.</p