3 research outputs found

    Optimizaci贸n de hiperpar谩metros de regresi贸n del proceso gaussiano para predecir problemas financieros

    Get PDF
    Predicting financial distress has become one of the most important topics of the hour that has swept the accounting and financial field due to its significant correlation with the development of science and technology. The main objective of this paper is to predict financial distress based on the Gaussian Process Regression (GPR) and then compare the results of this model with the results of other deep learning models (SVM, LR, LD, DT, KNN). The analysis is based on a dataset of 352 companies extracted from the Kaggle database. As for predictors, 83 financial ratios were used. The study concluded that the use of GPR achieves very relevant results. Furthermore, it outperformed the rest of the deep learning models and achieved first place equally with the SVM model with a classification accuracy of 81%. The results contribute to the maintenance of the integrated system and the prosperity of the country鈥檚 economy, the prediction of the financial distress of companies and thus the potential prevention of disruption of the given system.La predicci贸n de las dificultades financieras se ha convertido en uno de los temas m谩s importantes en el 谩rea contable y financiera debido a su correlaci贸n significativa con el desarrollo de la ciencia y la tecnolog铆a. El objetivo principal de este trabajo es predecir la dificultad financiera con base en la Regresi贸n de Procesos Gaussianos (GPR) y luego comparar los resultados de este modelo con los resultados de otros modelos de aprendizaje profundo (SVM, LR, LD, DT, KNN). El an谩lisis se basa en un conjunto de datos de 352 empresas extra铆dos de la base de datos de Kaggle. En cuanto a los predictores, se utilizaron 83 ratios financieros. El estudio concluy贸 que el uso de la GPR logra resultados muy relevantes. Adem谩s, super贸 al resto de los modelos de aprendizaje profundo y logr贸 el primer lugar por igual con el modelo SVM con una precisi贸n de clasificaci贸n del 81 %. Los resultados contribuyen al mantenimiento del sistema integrado y a la prosperidad de la econom铆a del pa铆s, a la predicci贸n de las dificultades financieras de las empresas y, por lo tanto, a la posible prevenci贸n de perturbaciones del sistema en cuesti贸n

    Optimizaci贸n de hiperpar谩metros de regresi贸n del proceso gaussiano para predecir problemas financieros

    Get PDF
    La predicci贸n de las dificultades financieras se ha convertido en uno de los temas m谩s importantes en el 谩rea contable y financiera debido a su correlaci贸n significativa con el desarrollo de la ciencia y la tecnolog铆a. El objetivo principal de este trabajo es predecir la dificultad financiera con base en la Regresi贸n de Procesos Gaussianos (GPR) y luego comparar los resultados de este modelo con los resultados de otros modelos de aprendizaje profundo (SVM, LR, LD, DT, KNN). El an谩lisis se basa en un conjunto de datos de 352 empresas extra铆dos de la base de datos de Kaggle. En cuanto a los predictores, se utilizaron 83 ratios financieros. El estudio concluy贸 que el uso de la GPR logra resultados muy relevantes. Adem谩s, super贸 al resto de los modelos de aprendizaje profundo y logr贸 el primer lugar por igual con el modelo SVM con una precisi贸n de clasificaci贸n del 81 %. Los resultados contribuyen al mantenimiento del sistema integrado y a la prosperidad de la econom铆a del pa铆s, a la predicci贸n de las dificultades financieras de las empresas y, por lo tanto, a la posible prevenci贸n de perturbaciones del sistema en cuesti贸n.//Predicting financial distress has become one of the most important topics of the hour that has swept the accounting and financial field due to its significant correlation with the development of science and technology. The main objective of this paper is to predict financial distress based on the Gaussian Process Regression (GPR) and then compare the results of this model with the results of other deep learning models (SVM, LR, LD, DT, KNN). The analysis is based on a dataset of 352 companies extracted from the Kaggle database. As for predictors, 83 financial ratios were used. The study concluded that the use of GPR achieves very relevant results. Furthermore, it outperformed the rest of the deep learning models and achieved first place equally with the SVM model with a classification accuracy of 81%. The results contribute to the maintenance of the integrated system and the prosperity of the country鈥檚 economy, the prediction of the financial distress of companies and thus the potential prevention of disruption of the given system

    Unveiling the diverse efficacy of artificial neural networks and logistic regression: A comparative analysis in predicting financial distress

    Get PDF
    The prediction of financial distress has emerged as a significant concern over a prolonged period spanning more than half a century. This subject has garnered considerable attention owing to the precise outcomes derived from its predictive models. The main objective of this study is to predict financial distress using two types of Artificial Neural Networks (ANN) compared to the Logistic Regression (LR), and this will be done by relying on the data of 12 Algerian companies for the period 2015-2019. The reason for choosing these two types of networks in particular, is attributed to the fact that Elman Neural Network (ENN) is commonly used network, in contrast to the Feed-forward Distributed Time Delay Neural Network (FFDTDNN). Regarding the choice of these companies as a study sample, can be attributed to the similarity in the temporal range covered by their financial statements, coupled with their approximate parity in terms of asset size. This study concluded that the ENN model outperformed the LR model in predicting financial distress with a classification accuracy of 100%. On the other hand, the LR model outperformed the FFDTDNN with a classification accuracy of 83.33%. Therefore, it can be asserted that ANNs cannot be regarded as superior to Logistic Regression (LR) in all statuses. Instead, it is accurate to affirm that specific types of ANNs exhibit greater efficacy than LR in predicting financial distress, while other types demonstrate relatively diminished effectiveness
    corecore