22 research outputs found

    PIBF+ extracellular vesicles from mouse embryos affect IL-10 production by CD8+ cells

    Get PDF
    Earlier evidence suggests, that the embryo signals to the maternal immune system. Extracellular vesicles (EVs) are produced by all types of cells, and because they transport different kinds of molecules from one cell to the other, they can be considered as means of intercellular communication. The aim of this work was to test, whether the embryo is able to produce sufficient amounts of EVs to alter the function of peripheral lymphocytes. Embryo-derived EVs were identified by their Annexin V biding capacity, and sensitivity to Triton X dependent lysis, using flow cytometry. Transmission electron microscopy was used to detect EVs at the implantation site. Progesterone-induced blocking factor (PIBF) expression in embryo-derived EVs was demonstrated with immuno-electron microscopy. The % of IL-10 + murine lymphocytes was determined by flow cytometry. EVs were present in embryo culture media, but not in empty media. Mouse embryo-derived EVs adhere to the surface of both CD4+ and CD8+ murine peripheral T lymphocytes, partly, via phosphatidylserine binding. The number of IL-10+ murine peripheral CD8+ cells increases in the presence of embryo-derived EVS, and this effect is counteracted by pre-treatment of EVs with an anti-PIBF antibody, suggesting that the embryo communicates with the maternal immune system via EVs

    Tumor-Derived Microvesicles Induce, Expand and Up-Regulate Biological Activities of Human Regulatory T Cells (Treg)

    Get PDF
    Background: Tumor-derived microvesicles (TMV) or exosomes are present in body fluids of patients with cancer and might be involved in tumor progression. The frequency and suppressor functions of peripheral blood CD4 + CD25 high FOXP3 + Treg are higher in patients with cancer than normal controls. The hypothesis is tested that TMV contribute to induction/ expansion/and activation of human Treg. Methodology/Principal Findings: TMV isolated from supernatants of tumor cells but not normal cells induced the generation and enhanced expansion of human Treg. TMV also mediated conversion of CD4 + CD25 neg T cells into CD4 + CD25 high FOXP3 + Treg. Upon co-incubation with TMV, Treg showed an increased FasL, IL-10, TGF-b1, CTLA-4, granzyme B and perforin expression (p,0.05) and mediated stronger suppression of responder cell (RC) proliferation (p,0.01). Purified Treg were resistant to TMV-mediated apoptosis relative to other T cells. TMV also increased phospho-SMAD2/3 and phospho-STAT3 expression in Treg. Neutralizing Abs specific for TGF-b1 and/or IL-10 significantly inhibited TMV ability to expand Treg. Conclusions/Significance: This study suggests that TMV have immunoregulatory properties. They induce Treg, promote Treg expansion, up-regulate Treg suppressor function and enhance Treg resistance to apoptosis. Interactions of TMV wit

    Exosome removal as a therapeutic adjuvant in cancer

    Get PDF
    corecore