679 research outputs found
Neurogenic Inflammation of Guinea-Pig Bladder
Capsaicin, substance P, and ovalbumin, instilled into the bladders
of naive and ovalbumin (OVA) sensitized guineapigs caused
inflammation, as indicated by increased vascular permeability.
Histological changes after exposure to these compounds progressed
with time from intense vasodilatation to marginalization of
granulocytes followed by interstitial migration of leukocytes. In
vitro incubation of guinea-pig bladder tissue with substance P and
ovalbumin stimulated release of prostaglandin D2 and leukotrienes. In
vitro incubation of bladder tissue with capsaicin, OVA,
prostaglandin D2, leukotriene C4, histamine, or calcium ionophore
A-23587 all stimulated substance P release. These data suggest that
bladder inflammation initiated by a variety of stimuli could lead to
a cyclic pattern of release of inflammatory mediators and
neuropeptides, which could result in amplification and persistence
of cystitis after the inciting cause has subsided
Size versus truthfulness in the house allocation problem
We study the House Allocation problem (also known as the Assignment problem), i.e., the problem of allocating a set of objects among a set of agents, where each agent has ordinal preferences (possibly involving ties) over a subset of the objects. We focus on truthful mechanisms without monetary transfers for finding large Pareto optimal matchings. It is straightforward to show that no deterministic truthful mechanism can approximate a maximum cardinality Pareto optimal matching with ratio better than 2. We thus consider randomized mechanisms. We give a natural and explicit extension of the classical Random Serial Dictatorship Mechanism (RSDM) specifically for the House Allocation problem where preference lists can include ties. We thus obtain a universally truthful randomized mechanism for finding a Pareto optimal matching and show that it achieves an approximation ratio of eovere-1. The same bound holds even when agents have priorities (weights) and our goal is to find a maximum weight (as opposed to maximum cardinality) Pareto optimal matching. On the other hand we give a lower bound of 18 over 13 on the approximation ratio of any universally truthful Pareto optimal mechanism in settings with strict preferences. In the case that the mechanism must additionally be non-bossy, an improved lower bound of eovere-1 holds. This lower bound is tight given that RSDM for strict preference lists is non-bossy. We moreover interpret our problem in terms of the classical secretary problem and prove that our mechanism provides the best randomized strategy of the administrator who interviews the applicants
Recommended from our members
The Immunological Basis of Dry Eye Disease and Current Topical Treatment Options.
Homeostasis of the lacrimal functional unit is needed to ensure a well-regulated ocular immune response comprising innate and adaptive phases. When the ocular immune system is excessively stimulated and/or immunoregulatory mechanisms are disrupted, the balance between innate and adaptive phases is dysregulated and chronic ocular surface inflammation can result, leading to chronic dry eye disease (DED). According to the Tear Film and Ocular Surface Society Dry Eye Workshop II definition, DED is a multifactorial disorder of the ocular surface characterized by impairment and loss of tear homeostasis (hyperosmolarity), ocular discomfort or pain, and neurosensory abnormalities. Dysregulated ocular immune responses result in ocular surface damage, which is a further contributing factor to DED pathology. Several therapeutics are available to break the vicious circle of DED and prevent chronic disease and progression, including immunosuppressive agents (steroids) and immunomodulators (cyclosporine and lifitegrast). Given the chronic inflammatory nature of DED, each of these agents is commonly used in clinical practice. In this study, we review the immunopathology of DED and the molecular and cellular actions of current topical DED therapeutics to inform clinical decision making
Molecular networks discriminating mouse bladder responses to intravesical bacillus Calmette-Guerin (BCG), LPS, and TNF-α
<p>Abstract</p> <p>Background</p> <p>Despite being a mainstay for treating superficial bladder carcinoma and a promising agent for interstitial cystitis, the precise mechanism of Bacillus Calmette-Guerin (BCG) remains poorly understood. It is particularly unclear whether BCG is capable of altering gene expression in the bladder target organ beyond its well-recognized pro-inflammatory effects and how this relates to its therapeutic efficacy. The objective of this study was to determine differentially expressed genes in the mouse bladder following chronic intravesical BCG therapy and to compare the results to non-specific pro inflammatory stimuli (LPS and TNF-α). For this purpose, C57BL/6 female mice received four weekly instillations of BCG, LPS, or TNF-α. Seven days after the last instillation, the urothelium along with the submucosa was removed from detrusor muscle and the RNA was extracted from both layers for cDNA array experiments. Microarray results were normalized by a robust regression analysis and only genes with an expression above a conditional threshold of 0.001 (3SD above background) were selected for analysis. Next, genes presenting a 3-fold ratio in regard to the control group were entered in Ingenuity Pathway Analysis (IPA) for a comparative analysis in order to determine genes specifically regulated by BCG, TNF-α, and LPS. In addition, the transcriptome was precipitated with an antibody against RNA polymerase II and real-time polymerase chain reaction assay (Q-PCR) was used to confirm some of the BCG-specific transcripts.</p> <p>Results</p> <p>Molecular networks of treatment-specific genes generated several hypotheses regarding the mode of action of BCG. BCG-specific genes involved small GTPases and BCG-specific networks overlapped with the following canonical signaling pathways: axonal guidance, B cell receptor, aryl hydrocarbon receptor, IL-6, PPAR, Wnt/β-catenin, and cAMP. In addition, a specific detrusor network expressed a high degree of overlap with the development of the lymphatic system. Interestingly, TNF-α-specific networks overlapped with the following canonical signaling pathways: PPAR, death receptor, and apoptosis. Finally, LPS-specific networks overlapped with the LPS/IL-1 mediated inhibition of RXR. Because NF-kappaB occupied a central position in several networks, we further determined whether this transcription factor was part of the responses to BCG. Electrophoretic mobility shift assays confirmed the participation of NF-kappaB in the mouse bladder responses to BCG. In addition, BCG treatment of a human urothelial cancer cell line (J82) also increased the binding activity of NF-kappaB, as determined by precipitation of the chromatin by a NF-kappaB-p65 antibody and Q-PCR of genes bearing a NF-kappaB consensus sequence. Next, we tested the hypothesis of whether small GTPases such as LRG-47 are involved in the uptake of BCG by the bladder urothelium.</p> <p>Conclusion</p> <p>As expected, BCG treatment induces the transcription of genes belonging to common pro-inflammatory networks. However, BCG also induces unique genes belonging to molecular networks involved in axonal guidance and lymphatic system development within the bladder target organ. In addition, NF-kappaB seems to play a predominant role in the bladder responses to BCG therapy. Finally, in intact urothelium, BCG-GFP internalizes in LRG-47-positive vesicles.</p> <p>These results provide a molecular framework for the further study of the involvement of immune and nervous systems in the bladder responses to BCG therapy.</p
Regulatory network of inflammation downstream of proteinase-activated receptors
BACKGROUND: Protease-activated receptors (PAR) are present in the urinary bladder, and their expression is altered in response to inflammation. PARs are a unique class of G protein-coupled that carry their own ligands, which remain cryptic until unmasked by proteolytic cleavage. Although the canonical signal transduction pathway downstream of PAR activation and coupling with various G proteins is known and leads to the rapid transcription of genes involved in inflammation, the effect of PAR activation on the downstream transcriptome is unknown. We have shown that intravesical administration of PAR-activating peptides leads to an inflammatory reaction characterized by edema and granulocyte infiltration. Moreover, the inflammatory response to intravesical instillation of known pro-inflammatory stimuli such as E. coli lipopolysaccharide (LPS), substance P (SP), and antigen was strongly attenuated by PAR1- and to a lesser extent by PAR2-deficiency. RESULTS: Here, cDNA array experiments determined inflammatory genes whose expression is dependent on PAR1 activation. For this purpose, we compared the alteration in gene expression in wild type and PAR1(-/- )mice induced by classical pro-inflammatory stimuli (LPS, SP, and antigen). 75 transcripts were considered to be dependent on PAR-1 activation and further annotated in silico by Ingenuity Pathways Analysis (IPA) and gene ontology (GO). Selected transcripts were target validated by quantitative PCR (Q-PCR). Among PAR1-dependent transcripts, the following have been implicated in the inflammatory process: b2m, ccl7, cd200, cd63, cdbpd, cfl1, dusp1, fkbp1a, fth1, hspb1, marcksl1, mmp2, myo5a, nfkbia, pax1, plaur, ppia, ptpn1, ptprcap, s100a10, sim2, and tnfaip2. However, a balanced response to signals of injury requires a transient cellular activation of a panel of genes together with inhibitory systems that temper the overwhelming inflammation. In this context, the activation of genes such as dusp1 and nfkbia seems to counter-balance the inflammatory response to PAR activation by limiting prolonged activation of p38 MAPK and increased cytokine production. In contrast, transcripts such as arf6 and dcnt1 that are involved in the mechanism of PAR re-sensitization would tend to perpetuate the inflammatory reaction in response to common pro-inflammatory stimuli. CONCLUSION: The combination of cDNA array results and genomic networks reveals an overriding participation of PAR1 in bladder inflammation, provides a working model for the involvement of downstream signaling, and evokes testable hypotheses regarding the transcriptome downstream of PAR1 activation. It remains to be determined whether or not mechanisms targeting PAR1 gene silencing or PAR1 blockade will ameliorate the clinical manifestation of cystitis
Recommended from our members
Ocular Allergy Modulation to Hi-Dose Antigen Sensitization Is a Treg-Dependent Process
A reproducible method to inhibit allergic immune responses is accomplished with hi-dose Ag sensitization, via intraperitoneal (IP) injection. However, the role of CD4+ CD25+ FoxP3+ T regulatory cells (Treg) in this process is unknown, as is whether such modulation extends to ocular allergy. We therefore determined herein whether hi-dose sensitization modulates ocular allergy, and whether CD4+ CD25+ FoxP3+ Treg are involved. C57BL/6 mice were IP sensitized via low-dose (100 µg) versus hi-dose (1000 µg) ovalbumin (OVA), in aluminum hydroxide (1 mg) and pertussis-toxin (300 ng). Other mice received anti-CD25 Ab (PC61) to ablate Treg during sensitization. In another experiment, Treg from hi-dose sensitized mice were adoptively transferred into low-dose sensitized mice. Once daily OVA challenges were administered. Clinical signs, IgE, T cell cytokines, and eosinophils were assessed. Data revealed that hi-dose, but not low-dose, sensitization led to allergy modulation, indicated by decreased clinical signs, serum IgE levels, Th2 recall responses, and eosinophil recruitment. T cells from hi-dose sensitized mice showed a robust increase in TGF-b production, and Treg from these mice were able to efficiently suppress effector T cell proliferation in vitro. In addition, in vivo Treg ablation in hi-dose sensitized mice revoked allergy modulation. Lastly, Treg from hi-dose sensitized mice were able to adoptively transfer allergy modulation to their low-dose sensitized counterparts. Collectively, these findings indicate that modulation to hi-dose sensitization, which is extended to ocular allergy, occurs in a Treg-dependent manner. In addition, our data suggest that hi-dose sensitization may henceforth facilitate the further examination of CD4+ CD25+ FoxP3+ Treg in allergic disease
- …