4 research outputs found

    Exploration of structural stability, electronic, and magnetic properties of silver doped MgO at low concentration using the modified Becke and Johnson approach for spintronic applications

    No full text
    In order to improve the physical properties of MgO and make it useful for interesting optoelectronic and spintronic applications, we proceed to dope it with silver. To do so, we investigate the structural, electronic, and magnetic properties of pure MgO in the rock-salt structure and MgO doped with a transition metal Ag at different concentrations [x = 0%, 3.125% (SC), 6.25% (BCC), 12.5% (FCC), and 25% (FCC)]. The generalized gradient approximation, proposed by Wu and Cohen (GGA-WC), was employed for the structural parameters calculation, and the Tran Blaha-modified Becke Johnson (TB-mBJ) correction was used to investigate the electronic and magnetic properties. The structural results show that AgxMg1−xO lattice parameters increase with increasing Ag doping atom concentration. The formation energy values of the compounds demonstrate their stability and point to the possibility of their synthesis. We found that the electronic structures of Ag0.125Mg0.875O, Ag0.062Mg0.938O, and Ag0.031Mg0.969O compounds are half-metallic with ferromagnetic behavior and a total magnetic moment of 1 μB and are 100% spin-polarized; this leads us to believe that those Ag impurity atoms are the most prominent generators of magnetic moments. It should be noted that the compound is a nonmagnetic metal at a concentration of 25%. With increasing impurity concentration, the half-metallic ferromagnetic gap narrows. You can go from a direct semiconductor (x = 0%) to a direct half metal (6.25% (BCC) and 12.5% (FCC)) to an indirect half metallic with a low concentration of 3.125% (SC) by varying the Ag concentration. Magnetic properties, Curie temperature, and the exchange constants N0α and N0β are also investigated, and the ferromagnetic behavior is confirmed. The results indicated that doping MgO with a low Ag concentration may be appropriate for spintronic applications and magnetic data storage

    Silver impurities effects on CeO

    No full text
    In this study, the fundamental properties of silver-doped CeO2 forming the compounds Ce1−xAgxO2 [x = 3.125% (SC), 6.25% (BCC), and 12.5% (FCC)] were investigated using the full-potential linearized augmented plane wave FP-LAPW method based on spin-polarized density functional theory SP-DFT, as introduced in the Wien2k package. The calculations were carried out by adopting the revised Perdew–Burke–Ernzerh solid PBE-sol approach. The obtained findings from structural parameters show a decrease of both bulk modulus and lattice constants with increasing the concentrations. Meanwhile, the electronic properties, such as spin-polarized electronic band structures and density of states analysis of both spin channels, illustrate semiconductor ferromagnetic nature for doped compounds at all concentrations. Furthermore, the optical features, including energy absorption spectra and also the real and imaginary parts of the dielectric function, are investigated. These results reveal that Ce1−xAgxO2 (x = 3.125%, 6.25%, and 12.5%) possesses better optical absorbance than pure CeO2. From the above-mentioned results, it appears that the silver-doped CeO2 seems to be a promising candidate for spintronic and photocatalytic areas

    Abstracts of 1st International Conference on Computational & Applied Physics

    No full text
    This book contains the abstracts of the papers presented at the International Conference on Computational & Applied Physics (ICCAP’2021) Organized by the Surfaces, Interfaces and Thin Films Laboratory (LASICOM), Department of Physics, Faculty of Science, University Saad Dahleb Blida 1, Algeria, held on 26–28 September 2021. The Conference had a variety of Plenary Lectures, Oral sessions, and E-Poster Presentations. Conference Title: 1st International Conference on Computational & Applied PhysicsConference Acronym: ICCAP’2021Conference Date: 26–28 September 2021Conference Location: Online (Virtual Conference)Conference Organizer: Surfaces, Interfaces, and Thin Films Laboratory (LASICOM), Department of Physics, Faculty of Science, University Saad Dahleb Blida 1, Algeria
    corecore