6 research outputs found

    Role of hypercholesterolemia in osteoarthritis development

    Get PDF
    Several lines of research indicate that osteoarthritis (OA) is not only a joint disorder associated with mechanical stress and aging but also a ‘metabolic syndrome’ in which several risk factors work together to contribute to disease initiation and/or development. One such metabolic risk factor could be high cholesterol levels in the body. Even though high cholesterol level is a well-known risk factor for cardiovascular disorders, its possible role in musculoskeletal diseases, particularly OA, is not clear. The authors discuss the fundamental viewpoints on cholesterol involvement in the pathogenesis of OA, stressing the need for understanding the molecular mechanisms behind this association

    Impact of extracellular matrix derived from osteoarthritis subchondral bone osteoblasts on osteocytes: role of integrinβ1 and focal adhesion kinase signaling cues

    Get PDF
    Introduction: Our recent study indicated that subchondral bone pathogenesis in osteoarthritis (OA) is associated with osteocyte morphology and phenotypic abnormalities. However, the mechanism underlying this abnormality needs to be identified. In this study we investigated the effect of extracellular matrix (ECM) produced from normal and OA bone on osteocytic cells function.Methods: De-cellularized matrices, resembling the bone provisional ECM secreted from primary human subchondral bone osteoblasts (SBOs) of normal and OA patients were used as a model to study the effect on osteocytic cells. Osteocytic cells (MLOY4 osteocyte cell line) cultured on normal and OA derived ECMs were analyzed by confocal microscopy, scanning electron microscopy (SEM), cell attachment assays, zymography, apoptosis assays, qRT-PCR and western blotting. The role of integrin beta 1 and focal adhesion kinase (FAK) signaling pathways during these interactions were monitored using appropriate blocking antibodies.Results: The ECM produced by OA SBOs contained less mineral content, showed altered organization of matrix proteins and matrix structure compared with the matrices produced by normal SBOs. Culture of osteocytic cells on these defective OA ECM resulted in a decrease of integrin beta 1 expression and the de-activation of FAK cell signaling pathway, which subsequently affected the initial osteocytic cell's attachment and functions including morphological abnormalities of cytoskeletal structures, focal adhesions, increased apoptosis, altered osteocyte specific gene expression and increased Matrix metalloproteinases (MMP-2) and -9 expression.Conclusion: This study provides new insights in understanding how altered OA bone matrix can lead to the abnormal osteocyte phenotypic changes, which is typical in OA pathogenesis

    Cholesterol metabolism in pathogenesis of osteoarthritis disease

    No full text
    Several lines of research indicate that osteoarthritis (OA) is not only a joint disorder associated with mechanical stress and aging but also a ‘metabolic syndrome’ in which several risk factors work together to contribute to disease initiation and/or development. One such metabolic risk factor could be high cholesterol levels in the body. Even though high cholesterol level is a well-known risk factor for cardiovascular disorders, its possible role in musculoskeletal diseases, particularly OA, is not clear. The authors discuss the fundamental viewpoints on cholesterol involvement in the pathogenesis of OA, stressing the need for understanding the molecular mechanisms behind this association. This is the area of research needed to provide knowledge on how one should live to prevent OA development as well as to suggest new targets for drug therapy

    Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis

    No full text
    The application of mesoporous silica nanospheres (MSNs) loaded with drugs/growth factors to induce osteogenic differentiation of stem cells has been trialed by a number of researchers recently. However, limitations such as high cost, complex fabrication and unintended side effects from supraphysiological concentrations of the drugs/growth factors represent major obstacles to any potential clinical application in the near term. In this study we reported an in situ one-pot synthesis strategy of MSNs doped with hypoxia-inducing copper ions and systematically evaluated the nanospheres by in vitro biological assessments. The Cu-containing mesoporous silica nanospheres (Cu-MSNs) had uniform spherical morphology (∼100 nm), ordered mesoporous channels (∼2 nm) and homogeneous Cu distribution. Cu-MSNs demonstrated sustained release of both silicon (Si) and Cu ions and controlled degradability. The Cu-MSNs were phagocytized by immune cells and appeared to modulate a favorable immune environment by initiating proper pro-inflammatory cytokines, inducing osteogenic/angiogenic factors and suppressing osteoclastogenic factors by the immune cells. The immune microenvironment induced by the Cu-MSNs led to robust osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via the activation of Oncostation M (OSM) pathway. These results suggest that the novel Cu-MSNs could be used as an immunomodulatory agent with osteostimulatory capacity for bone regeneration/therapy application. Statement of significance In order to stimulate both osteogenesis and angiogenesis of stem cells for further bone regeneration, a new kind of hypoxia-inducing copper doped mesoporous silica nanospheres (Cu-MSNs) were prepared via one-pot synthesis. Biological assessments under immune environment which better reflect the in vivo response revealed that the nanospheres possessed osteostimulatory capacity and had potential as immunomodulatory agent for bone regeneration/therapy application. The strategy of introducing controllable amount of therapeutic ions instead of loading expensive drugs/growth factors in mesoporous silica nanosphere provides new options for bioactive nanomaterial functionalization

    Protective effects of mitochondria-targeted antioxidants and statins on cholesterolinduced osteoarthritis

    No full text
    The contribution of metabolic factors on the severity of osteoarthritis (OA) is not fully appreciated. This study aimed to define the effects of hypercholesterolemia on the progression of OA. Apolipoprotein E-deficient (ApoE(-/-)) mice and rats with diet-induced hypercholesterolemia (DIHC) rats were used to explore the effects of hypercholesterolemia on the progression of OA. Both models exhibited OA-like changes, characterized primarily by a loss of proteoglycans, collagen and aggrecan degradation, osteophyte formation, changes to subchondral bone architecture, and cartilage degradation. Surgical destabilization of the knees resulted in a dramatic increase of degradative OA symptoms in animals fed a high-cholesterol diet compared withcontrols. Clinically relevant doses of free cholesterol resulted in mitochondrial dysfunction, overproduction of reactive oxygen species (ROS), and increased expression of degenerative and hypertrophic markers in chondrocytes and breakdown of the cartilage matrix. We showed that the severity of diet-induced OA changes could be attenuated by treatment with both atorvastatin and a mitochondrial targeting antioxidant. The protective effects of the mitochondrial targeting antioxidant were associated with suppression of oxidative damage to chondrocytes and restoration of extracellular matrix homeostasis of the articular chondrocytes. In summary, our data show that hypercholesterolemia precipitates OA progression by mitochondrial dysfunction in chondrocytes, in part by increasing ROS production and apoptosis. By addressing the mitochondrial dysfunction using antioxidants, we were able attenuate the OA progression in our animal models. This approach may form the basis for novel treatment options for this OA risk group in humans.-Farnaghi, S., Prasadam, I., Cai, G., Friis, T., Du, Z., Crawford, R., Mao, X., Xiao, Y. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis
    corecore