82 research outputs found

    Statin-induced myopathic changes in primary human muscle cells and reversal by a prostaglandin F2 alpha analogue

    Get PDF
    Statin-related muscle side effects are a constant healthcare problem since patient compliance is dependent on side effects. Statins reduce plasma cholesterol levels and can prevent secondary cardiovascular diseases. Although statin-induced muscle damage has been studied, preventive or curative therapies are yet to be reported. We exposed primary human muscle cell populations (n = 22) to a lipophilic (simvastatin) and a hydrophilic (rosuvastatin) statin and analyzed their expressome. Data and pathway analyses included GOrilla, Reactome and DAVID. We measured mevalonate intracellularly and analyzed eicosanoid profiles secreted by human muscle cells. Functional assays included proliferation and differentiation quantification. More than 1800 transcripts and 900 proteins were differentially expressed after exposure to statins. Simvastatin had a stronger effect on the expressome than rosuvastatin, but both statins influenced cholesterol biosynthesis, fatty acid metabolism, eicosanoid synthesis, proliferation, and differentiation of human muscle cells. Cultured human muscle cells secreted ω-3 and ω-6 derived eicosanoids and prostaglandins. The ω-6 derived metabolites were found at higher levels secreted from simvastatin-treated primary human muscle cells. Eicosanoids rescued muscle cell differentiation. Our data suggest a new aspect on the role of skeletal muscle in cholesterol metabolism. For clinical practice, the addition of omega-n fatty acids might be suitable to prevent or treat statin-myopathy

    Vascular tissue specific mirna profiles reveal novel correlations with risk factors in coronary artery disease

    Get PDF
    Funding Information: Acknowledgments: We wish to thank all individuals donating cardiovascular relevant tissue and data. We would like to thank the surgeons of the Department of Cardiovascular Surgery and the KaBi-DHM (Cardiovascular Biobank of the German Heart Center) for collecting the surgical specimens. We further wish to thank the German Centre for Cardiovascular Research (DZHK) for financial support, the technical assistance team (Nicole Beck, Ulrike Weiß and Susanne Blachut) for wet lab and sequencing support. M.v.S. reported support by the Clinician Scientist Excellence Program of the DZHK, the German Society of Cardiology (DGK), the German Heart Foundation (Deutsche Herzstiftung e.V.), the Fondation Leducq (PlaqOmics) and the Corona Foundation (Junior Research Group Cardiovascular Diseases). Further, support was provided within the framework of DigiMed Bayern (www.digimed-bayern.de) funded by the Bavarian State Ministry of Health and Care and the Bavarian State Ministry of Science and the Arts through the DHM-MSRM Joint Research Center. Figures were prepared based on a BioRender’s Academic License using BioRender https://biorender.com/. Funding Information: Funding: Supported by the German Centre for Cardiovascular Research (DZHK), grant number 81X2100144 and by the BMBF (German Ministry of Education and Research). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Non-coding RNAs have already been linked to CVD development and progression. While microR-NAs (miRs) have been well studied in blood samples, there is little data on tissue-specific miRs in cardiovascular relevant tissues and their relation to cardiovascular risk factors. Tissue-specific miRs derived from Arteria mammaria interna (IMA) from 192 coronary artery disease (CAD) patients undergoing coronary artery bypass grafting (CABG) were analyzed. The aims of the study were 1) to establish a reference atlas which can be utilized for identification of novel diagnostic biomarkers and potential therapeutic targets, and 2) to relate these miRs to cardiovascular risk factors. Overall, 393 individual miRs showed sufficient expression levels and passed quality control for further analysis. We identified 17 miRs–miR-10b-3p, miR-10-5p, miR-17-3p, miR-21-5p, miR-151a-5p, miR-181a-5p, miR-185-5p, miR-194-5p, miR-199a-3p, miR-199b-3p, miR-212-3p, miR-363-3p, miR-548d-5p, miR-744-5p, miR-3117-3p, miR-5683 and miR-5701–significantly correlated with cardiovascular risk factors (correlation coefficient >0.2 in both directions, p-value (p < 0.006, false discovery rate (FDR) <0.05). Of particular interest, miR-5701 was positively correlated with hypertension, hypercholesterolemia, and diabetes. In addition, we found that miR-629-5p and miR-98-5p were significantly correlated with acute myocardial infarction. We provide a first atlas of miR profiles in IMA samples from CAD patients. In perspective, these miRs might play an important role in improved risk assessment, mechanistic disease understanding and local therapy of CAD.Peer reviewe

    Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection

    Get PDF
    The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies

    Impulsivity is a heritable trait in rodents and associated with a novel quantitative trait locus on chromosome 1

    Get PDF
    Abstract: Impulsivity describes the tendency to act prematurely without appropriate foresight and is symptomatic of a number of neuropsychiatric disorders. Although a number of genes for impulsivity have been identified, no study to date has carried out an unbiased, genome-wide approach to identify genetic markers associated with impulsivity in experimental animals. Herein we report a linkage study of a six-generational pedigree of adult rats phenotyped for one dimension of impulsivity, namely premature responding on the five-choice serial reaction time task, combined with genome wide sequencing and transcriptome analysis to identify candidate genes associated with the expression of the impulsivity trait. Premature responding was found to be heritable (h2 = 13–16%), with significant linkage (LOD 5.2) identified on chromosome 1. Fine mapping of this locus identified a number of polymorphic candidate genes, however only one, beta haemoglobin, was differentially expressed in both the founder strain and F6 generation. These findings provide novel insights into the genetic substrates and putative neurobiological mechanisms of impulsivity with broader translational relevance for impulsivity-related disorders in humans

    Homozygosity Mapping in Families with Joubert Syndrome Identifies a Locus on Chromosome 9q34.3 and Evidence for Genetic Heterogeneity

    Get PDF
    Joubert syndrome is a rare developmental defect of the cerebellar vermis, with autosomal recessive inheritance. The phenotype is highly variable and may include episodic hyperpnea, abnormal eye movements, hypotonia, ataxia, developmental delay, and mental retardation. Even within sibships the phenotype may vary, making it difficult to establish the exact clinical diagnostic boundaries of Joubert syndrome. To genetically localize the gene region, we have performed a whole-genome scan in two consanguineous families of Arabian/Iranian origins, with multiple affected probands. In one family, we detected linkage to the telomeric region of chromosome 9q, close to the marker D9S158, with a multipoint LOD score of Z=+3.7. The second family did not show linkage to this region, giving a first indication of genetic heterogeneity underlying Joubert syndrome. These findings were supported by subsequent analysis of two smaller families—one compatible with linkage to 9q; the other, unlinked. We conclude that Joubert syndrome is clinically and genetically heterogeneous and that one locus maps to chromosome 9q

    Splitting Schizophrenia: Periodic Catatonia–Susceptibility Locus on Chromosome 15q15

    Get PDF
    The nature of subtypes in schizophrenia and the meaning of heterogeneity in schizophrenia have been considered a principal controversy in psychiatric research. We addressed these issues in periodic catatonia, a clinical entity derived from Leonhard’s classification of schizophrenias, in a genomewide linkage scan. Periodic catatonia is characterized by qualitative psychomotor disturbances during acute psychotic outbursts and by long-term outcome. On the basis of our previous findings of a lifetime morbidity risk of 26.9% of periodic catatonia in first-degree relatives, we conducted a genome scan in 12 multiplex pedigrees with 135 individuals, using 356 markers with an average spacing of 11 cM. In nonparametric multipoint linkage analyses (by GENEHUNTER-PLUS), significant evidence for linkage was obtained on chromosome 15q15 (P = 2.6 × 10(−5); nonparametric LOD score [LOD*] 3.57). A further locus on chromosome 22q13 with suggestive evidence for linkage (P = 1.8 × 10(−3); LOD* 1.85) was detected, which indicated genetic heterogeneity. Parametric linkage analysis under an autosomal dominant model (affecteds-only analysis) provided independent confirmation of nonparametric linkage results, with maximum LOD scores 2.75 (recombination fraction [θ] .04; two-point analysis) and 2.89 (θ = .029; four-point analysis), at the chromosome 15q candidate region. Splitting the complex group of schizophrenias on the basis of clinical observation and genetic analysis, we identified periodic catatonia as a valid nosological entity. Our findings provide evidence that periodic catatonia is associated with a major disease locus, which maps to chromosome 15q15
    corecore