19 research outputs found

    On Robotic In-Orbit Assembly of Large Aperture Space Telescopes

    Get PDF
    Space has found itself amidst numerous missions benefitting the life on Earth and for mankind to explore further. The space community has been in the move of launching various on-orbit missions, tackling the extremities of the space environment, with the use of robots, for performing tasks like assembly, maintenance, repairs, etc. The urge to explore further in the universe for scientific benefits has found the rise of modular Large-Space Telescopes (LASTs). With respect to the challenges of the in-space assembly of LAST, a five Degrees-of Freedom (DoF) End-Over-End Walking Robot (E-Walker) is presented in this paper. The Dynamical Model and Gait Pattern of the E-Walker is discussed with reference to the different phases of its motion. For the initial verification of the E-Walker model, a PID controller was used to make the E-Walker follow the desired trajectory. A mission concept discussing a potential strategy of assembling a 25m LAST with 342 Primary Mirror Units (PMUs) is briefly discussed. Simulation results show the precise tracking of the E-Walker along a desired trajectory is achieved without exceeding the joint torques

    Downsizing an orbital space robot: A dynamic system based evaluation

    Get PDF
    Small space robots have the potential to revolutionise space exploration by facilitating the on-orbit assembly of infrastructure, in shorter time scales, at reduced costs. Their commercial appeal will be further improved if such a system is also capable of performing on-orbit servicing missions, in line with the current drive to limit space debris and prolong the lifetime of satellites already in orbit. Whilst there have been a limited number of successful demonstrations of technologies capable of these on-orbit operations, the systems remain large and bespoke. The recent surge in small satellite technologies is changing the economics of space and in the near future, downsizing a space robot might become be a viable option with a host of benefits. This industry wide shift means some of the technologies for use with a downsized space robot, such as power and communication subsystems, now exist. However, there are still dynamic and control issues that need to be overcome before a downsized space robot can be capable of undertaking useful missions. This paper first outlines these issues, before analyzing the effect of downsizing a system on its operational capability. Therefore presenting the smallest controllable system such that the benefits of a small space robot can be achieved with current technologies. The sizing of the base spacecraft and manipulator are addressed here. The design presented consists of a 3 link, 6 degrees of freedom robotic manipulator mounted on a 12U form factor satellite. The feasibility of this 12U space robot was evaluated in simulation and the in-depth results presented here support the hypothesis that a small space robot is a viable solution for in-orbit operations

    Towards Robotic On-Orbit Assembly of Large Space Telescopes: Mission Architectures, Concepts, and Analyses

    Get PDF
    Over the next two decades, unprecedented astronomy missions could be enabled by space telescopes larger than the James Webb Space Telescope. Commercially, large aperture space-based imaging systems will enable a new generation of Earth Observation missions for both science and surveillance programs. However, launching and operating such large telescopes in the extreme space environment poses practical challenges. One of the key design challenges is that very large mirrors (i.e. apertures larger than 3m) cannot be monolithically manufactured and, instead, a segmented design must be utilized to achieve primary mirror sizes of up to 100m. Even if such large primary mirrors could be made, it is impossible to stow them in the fairings of current and planned launch vehicles, e.g., SpaceX’s Starship reportedly has a 9m fairing diameter. Though deployment of a segmented telescope via a folded-wing design (as done with the James Webb Space Telescope) is one approach to overcoming this volumetric challenge, it is considered unfeasible for large apertures such as the 25m telescope considered in this study. Parallel studies conducted by NASA indicate that robotic on-orbit assembly (OOA) of these observatories offers the possibility, surprisingly, of reduced cost and risk for smaller telescopes rather than deploying them from single launch vehicles but this is not proven. Thus, OOA of large aperture astronomical and Earth Observation telescopes is of particular interest to various space agencies and commercial entities. In a new partnership with Surrey Satellite Technology Limited and Airbus Defence and Space, the Surrey Space Centre is developing the capability for autonomous robotic OOA of large aperture segmented telescopes. This paper presents the concept of operation and mission analysis for OOA of a 25m aperture telescope operating in the visible waveband of the electromagnetic spectrum; telescopes of this size will be of much value as it would permit 1m spatial resolution of a location on Earth from geostationary orbit. Further, the conceptual evaluation of robotically assembling 2m and 5m telescopes will be addressed; these missions are envisaged as essential technology demonstration precursors to the 25m imaging system

    Combined Nonlinear H∞ Controller for a Controlled-Floating Space Robot

    No full text
    corecore