16 research outputs found

    Targeting neuroinflammation for therapeutic intervention in neurodegenerative pathologies: A role for the peptide analogue of thymulin (PAT)

    Get PDF
    Introduction: Inflammation has a vital task in protecting the organism, but when deregulated, it can have serious pathological consequences. The central nervous system (CNS) is capable of mounting immune and inflammatory responses, albeit different from that observed in the periphery. Neuroinflammation, however, can be a major contributor to neurodegenerative diseases and constitute a major challenge for medicine and basic research. Areas covered: Both innate and adaptive immune responses normally play an important role in homeostasis within the CNS. Microglia, astrocytes and neuronal cells express a wide array of toll-like receptors (TLR) that can be upregulated by infection, trauma, injuries and various exogenic or endogenic factors. Chronic hyper activation of brain immune cells can result in neurotoxic actions due to excessive production of several pro-inflammatory mediators. Several studies have recently described an important role for targeting receptors such as nicotinic receptors located on cells in the CNS or in other tissues for the control of inflammation. Expert opinion: Thymulin and its synthetic peptide analogue (PAT) appear to exert potent anti-inflammatory effects at the level of peripheral tissues as well as at the level of the brain. This effect involves, at least partially, the activation of cholinergic mechanisms. © 2012 Informa UK, Ltd

    Thymulin related peptide attenuates inflammation in the brain induced by intracerebroventricular endotoxin injection

    Get PDF
    Based on significant amount of evidence, it is now generally believed, that one underlying cause for neurodegenerative diseases, could be dysregulation in inflammatory processes. The actual mechanisms involved are not yet well understood. Several studies have demonstrated the potent analgesic and anti-inflammatory actions of thymulin related peptide (PAT), in different animal pain models. In this study, we investigated the efficacy of PAT in a recently developed model of neuroinflammation, in conscious rats, caused by intracerbroventricular (ICV) injection of endotoxin (ET). Our results indicate that ICV injection of PAT alone did not elicit significant alteration of nociceptive thresholds, while ET injections produced significant thermal hyperalgesia and cold allodynia. Pretreatment with PAT resulted in significant alleviation of ET-induced hyperalgesia and increased body temperature. In other sets of experiments, ICV injection of ET resulted in a significant elevation in the concentration of pro-inflammatory mediators measured in different areas of the brain; this elevation was significantly following pretreatment with PAT. Taken together these results provide evidence in support of our hypothesis that as a potent anti-inflammatory and analgesic peptide, PAT might have potential therapeutic use for the treatment of neurodegenerative conditions induced by silent or overt inflammation. © 2010 Elsevier Ltd. All rights reserved

    α-Melanocyte-related tripeptide, Lys-D-Pro-Val, ameliorates endotoxin-induced nuclear factor κB translocation and activation:evidence for involvement of an interleukin-1β<sub>193-195</sub> receptor antagonism in the alveolar epithelium

    No full text
    This paper investigate the different response regimes of a cutting tool on a lathe strongly coupled to a nonlinear energy sink. The equations of motion are analysed via the method of multiple scales. Condition of elimination of secular terms permit to derive equation of the slow invariant manifold (SIM) and the behavior of the system has been explained by studying the location of the fixed points of the slow flow on the SIM. Different types of responses are revealed such as periodic response and also strongly modulated response (SMR) wich are not related to the fixed points of the slow flow. Analytic results are then compared to numerical simulations

    α-Melanocyte-related tripeptide, Lys-D-Pro-Val, ameliorates endotoxin-induced nuclear factor κB translocation and activation:evidence for involvement of an interleukin-1β<sub>193-195</sub> receptor antagonism in the alveolar epithelium

    No full text
    The potential anti-inflammatory role of α-melanocyte-stimulating hormone (α-MSH)-related tripeptide, lysine11-D-proline-valine13 (KDPV), an analogue of interleukin (IL)-1β193–195 and an antagonist of IL-1β/prostaglandin E2, is not well characterized in the alveolar epithelium. In a model of foetal alveolar type II epithelial cells in vitro, we showed that lipopolysaccharide endotoxin (LPS) differentially, but selectively, induced the nuclear subunit composition of nuclear factor κB1 (NF-κB1) (p50), RelA (p65) and c-Rel (p75), in parallel to up-regulating the DNA-binding activity (supershift indicating the presence of the p50–p65 complex). LPS accelerated the degradation of inhibitory κB-α (IκB-α), accompanied by enhancing its phosphorylation in the cytosolic compartment but not in the nucleus. KDPV suppressed, in a dose-dependent manner, the nuclear localization of p50, p65 and p75, an effect that led to the subsequent inhibition of NF-κB activation. Interleukin-1 receptor antagonist (IL-1ra) decreased the nuclear abundance of p50, p65 and p75, and subsequently depressed the DNA-binding activity induced by LPS. Analysis of the mechanism involved in the KDPV- and IL-1ra-mediated inhibition of NF-κB nuclear localization revealed a reversal in IκB-α phosphorylation and degradation, followed by cytosolic accumulation. LPS induced endogenous IL-1β biosynthesis in a time-dependent manner; the administration of exogenous recombinant human interleukin 1 (rhIL-1) resulted in a dose-dependent activation of NF-κB. KDPV and IL-1ra abrogated the effect of rhIL-1. Pretreatment with the non-steroidal anti-inflammatory drug (NSAID) indomethacin, an inhibitor of cyclo-oxygenase, blocked the LPS-induced activation of NF-κB. These results indicate the involvement of prostanoid-dependent (NSAID-sensitive) and IL-1-dependent (IL-1ra-sensitive) mechanisms mediating LPS-induced NF-κB translocation and activation, a pathway that is regulated, in part, by a negative feedback mechanism transduced through IκB-α, the major cytosolic inhibitor of NF-κB.</jats:p

    Sustained Activation of the Anterior Thalamic Neurons with Low Doses of Kainic Acid Boosts Hippocampal Neurogenesis

    No full text
    Adult hippocampal neurogenesis is prone to modulation by several intrinsic and extrinsic factors. The anterior nucleus (AN) of the thalamus has extensive connections with the hippocampus, and stimulation of this region may play a role in altering neurogenesis. We have previously shown that electrical stimulation of the AN can substantially boost hippocampal neurogenesis in adult rats. Here, we performed selective unilateral chemical excitation of the cell bodies of the AN as it offers a more specific and sustained stimulation when compared to electrical stimulation. Our aim is to investigate the long-term effects of KA stimulation of the AN on baseline hippocampal proliferation of neural stem cells and neurogenesis. Continuous micro-perfusion of very low doses of kainic acid (KA) was administered into the right AN for seven days. Afterwards, adult male rats received 5&prime;-bromo-2&prime;-deoxyuridine (BrdU) injections (200 mg/kg, i.p) and were euthanized at either one week or four weeks post micro-perfusion. Open field and Y-maze tests were performed before euthanasia. The KA stimulation of the AN evoked sustained hippocampal neurogenesis that was associated with improved spatial memory in the Y-maze test. Administering dexamethasone prior to and simultaneously with the KA stimulation decreased both the hippocampal neurogenesis and the improved spatial recognition memory previously seen in the Y-maze test. These results suggest that hippocampal neurogenesis may be a downstream effect of stimulation in general, and of excitation of the cell bodies of the AN in particular, and that stimulation of that area improves spatial memory in rats

    Urinary Tract Infections Impair Adult Hippocampal Neurogenesis

    No full text
    Previous studies have suggested a link between urinary tract infections (UTIs) and cognitive impairment. One possible contributing factor for UTI-induced cognitive changes that has not yet been investigated is a potential alteration in hippocampal neurogenesis. In this study, we aim to investigate the effect of UTI on brain plasticity by specifically examining alterations in neurogenesis. Adult male Sprague Dawley rats received an intra-urethral injection of an Escherichia coli (E. coli) clinical isolate (108 CFU/mL). We found that rats with a UTI (CFU/mL &ge; 105) had reduced proliferation of neural stem cells (NSCs) at an early time point post infection (day 4) and neurogenesis at a later time point (day 34). This was associated with the decreased expression in mRNA of BDNF, NGF, and FGF2, and elevated expression of IL-1&beta; in the hippocampus at 6 h post infection, but with no changes in optical intensity of the microglia and astrocytes. In addition, infected rats spent less time exploring a novel arm in the Y-maze test. Treatment with an anti-inflammatory drug did not revert the effect on NSCs, while treatment with antibiotics further decreased the basal level of their proliferation. This study presents novel findings on the impact of urinary tract infections on hippocampal neurogenesis that could be correlated with cognitive impairment

    Potent analgesic and anti-inflammatory actions of a novel thymulin-related peptide in the rat

    No full text
    1. The present study examines the effect of PAT (peptide analogue of thymulin) in two rat models of inflammatory hyperalgesia induced by either i.pl. (1.25 μg in 50 μl saline) or i.p. (50 μg in 100 μl) injections of endotoxin ET. 2. Pretreatment with PAT (1, 5 or 25 μg in 100 μl saline, i.p.) decreased, in a dose dependent manner, both mechanical hyperalgesia, determined by the paw pressure (PP) test and thermal hyperalgesia determined by the hot plate (HP), the paw immersion (PI) and the tail flick (TF) tests. 3. Compared to the tripeptides K(D)PT and K(D)PV, known to antagonize interleukin (IL)-1β or IL-1β and PGE(2) mechanisms, PAT, at lower dosages, exerted stronger anti-hyperalgesic effects. 4. When compared with the effect of a steroidal (dexamethasone) and a non-steroidal (indomethacin) anti-inflammatory drugs (NSAID), PAT demonstrated equal analgesic actions. 5. Pretreatment with PAT, reduced significantly the increased concentration of IL-1β, IL-6, TNF-α and NGF due to i.pl. injection of ET. 6. Injection of i.p. ET produced sickness behaviour characterized by hyperalgesia and fever. Pretreatment with PAT prevented the hyperalgesia and maintained the body temperature within the normal range and was accompanied by a down-regulation of the levels of pro-inflammatory cytokines and PGE(2) in the liver. 7. PAT, in all doses used, did not result in any evident changes in the physiological parameters or in the normal behaviour of the rats. 8. The anti-hyperalgesic and anti-inflammatory effects of PAT can be attributed, at least partially, to the down-regulation of pro-inflammatory mediators
    corecore