84 research outputs found

    Helium Nova on a Very Massive White Dwarf -- A Light Curve Model of V445 Puppis (2000) Revised

    Full text link
    V445 Pup (2000) is a unique object identified as a helium nova. Color indexes during the outburst are consistent with those of free-free emission. We present a free-free emission dominated light curve model of V445 Pup on the basis of the optically thick wind theory. Our light curve fitting shows that (1) the white dwarf (WD) mass is very massive (M_WD \gtrsim 1.35 M_\sun), and (2) a half of the accreted matter remains on the WD, both of which suggest that the increasing WD mass. Therefore, V445 Pup is a strong candidate of Type Ia supernova progenitor. The estimated distance to V445 Pup is now consistent with the recent observational suggestions, 3.5 < d < 6.5 kpc. A helium star companion is consistent with the brightness of m_v=14.5 mag just before the outburst, if it is a little bit evolved hot (\log T (K) \gtrsim 4.5) star with the mass of M_He \gtrsim 0.8 M_\sun. We then emphasize importance of observations in the near future quiescent phase after the thick circumstellar dust dissipates away, especially its color and magnitude to specify the nature of the companion star. We have also calculated helium ignition masses for helium shell flashes against various helium accretion rates and discussed the recurrence period of helium novae.Comment: 8 pages including 12 figures, to appear in Ap

    Hot Subdwarfs in Resolved Binaries

    Full text link
    In the last decade or so, there have been numerous searches for hot subdwarfs in close binaries. There has been little to no attention paid to wide binaries however. The advantages of understanding these systems can be many. The stars can be assumed to be coeval, which means they have common properties. The distance and metallicity, for example, are both unknown for the subdwarf component, but may be determinable for the secondary, allowing other properties of the subdwarf to be estimated. With this in mind, we have started a search for common proper motion pairs containing a hot subdwarf component. We have uncovered several promising candidate systems, which are presented here.Comment: 6 pages, 4 figures. Proceedings of The Fourth Meeting on Hot Subdwarf Stars and Related Objects held in China, 20-24 July 2009. Accepted for publication in Astrophysics and Space Scienc

    MOST Detects g-Modes in the Late-Type be Star beta CMi (B8Ve)

    Full text link
    The Microvariability and Oscillations of stars (MOST) satellite has detected low-amplitude light variations (Δm\Delta m\sim1 mmag) in the Be star β\beta CMi (B8Ve). The observations lasted 41 days and the variations have typical periods 0.3\sim 0.3 days. We demonstrate that the dominant frequencies are consistent with prograde high-order g-modes of m=1m=-1 excited by the Fe-bump of opacity in an intermediate-mass (3.5M\approx 3.5 M_\odot) star with a nearly critical rotation period of 0.38 days. This is the first detection of nonradial g-mode pulsations in a Be star later than B6 leading to the possibility that pulsations are excited in all classical Be stars.Comment: 17 pages, 6 figures; Astrophysical Journal part 1 in pres

    R-mode oscillations and rocket effect in rotating superfluid neutron stars. I. Formalism

    Full text link
    We derive the hydrodynamical equations of r-mode oscillations in neutron stars in presence of a novel damping mechanism related to particle number changing processes. The change in the number densities of the various species leads to new dissipative terms in the equations which are responsible of the {\it rocket effect}. We employ a two-fluid model, with one fluid consisting of the charged components, while the second fluid consists of superfluid neutrons. We consider two different kind of r-mode oscillations, one associated with comoving displacements, and the second one associated with countermoving, out of phase, displacements.Comment: 10 page

    X-Ray Flashes in Recurrent Novae: M31N 2008-12a and the Implications of the Swift Non-detection

    Get PDF
    Models of nova outbursts suggest that an X-ray flash should occur just after hydrogen ignition. However, this X-ray flash has never been observationally confirmed. We present four theoretical light curves of the X-ray flash for two very massive white dwarfs (WDs) of 1.380 and 1.385 M_sun and for two recurrence periods of 0.5 and 1 years. The duration of the X-ray flash is shorter for a more massive WD and for a longer recurrence period. The shortest duration of 14 hours (0.6 days) among the four cases is obtained for the 1.385 M_sun WD with one year recurrence period. In general, a nova explosion is relatively weak for a very short recurrence period, which results in a rather slow evolution toward the optical peak. This slow timescale and the predictability of very short recurrence period novae give us a chance to observe X-ray flashes of recurrent novae. In this context, we report the first attempt, using the Swift observatory, to detect an X-ray flash of the recurrent nova M31N 2008-12a (0.5 or 1 year recurrence period), which resulted in the non-detection of X-ray emission during the period of 8 days before the optical detection. We discuss the impact of these observations on nova outburst theory. The X-ray flash is one of the last frontiers of nova studies and its detection is essentially important to understand the pre-optical-maximum phase. We encourage further observations

    HD 42477: coupled r modes, g modes and a p mode in an A0Vnne star

    Get PDF
    Several studies have shown that a number of stars pulsating in p modes lie between the β Cep and δ Sct instability strips in the Hertzsprung-Russell (HR) Diagram. At present, there is no certain understanding of how p~modes can be excited in this Teff range. The goal of this work is to disprove the conjecture that all stars pulsating in p modes and lying in this Teff range are the result of incorrect measurements of Teff, contamination, or the presence of unseen cooler companions lying in the δ Sct instability strip (given the high binary fraction of stars in this region of the HR Diagram). Using TESS data, we show that the A0Vnne star HD 42477 has a single p mode coupled to several r modes and/or g modes. We rule out a contaminating background star with a pixel-by-pixel examination, and we essentially rule out the possibility of a companion δ Sct star in a binary. We model the pulsations in HD 42477 and suggest that the g modes are excited by overstable convective core modes. We also conjecture that the single p mode is driven by coupling with the g modes, or that the oblateness of this rapidly-rotating star permits driving by He II ionization in the equatorial region

    The Unseen Population of F to K-type Companions to Hot Subdwarf Stars

    Full text link
    We present a method to select hot subdwarf stars with A to M-type companions using photometric selection criteria. We cover a wide range in wavelength by combining GALEX ultraviolet data, optical photometry from the SDSS and the Carlsberg Meridian telescope, near-infrared data from 2MASS and UKIDSS. We construct two complimentary samples, one by matching GALEX, CMC and 2MASS, as well as a smaller, but deeper, sample using GALEX, SDSS and UKIDSS. In both cases, a large number of composite subdwarf plus main-sequence star candidates were found. We fit their spectral energy distributions with a composite model in order to estimate the subdwarf and companion star effective temperatures along with the distance to each system. The distribution of subdwarf effective temperature was found to primarily lie in the 20,000 - 30,000 K regime, but we also find cooler subdwarf candidates, making up ~5-10 per cent. The most prevalent companion spectral types were seen to be main-sequence stars between F0 and K0, while subdwarfs with M-type companions appear much rarer. This is clear observational confirmation that a very efficient first stable Roche-lobe overflow channel appears to produce a large number of subdwarfs with F to K-type companions. Our samples thus support the importance of binary evolution for subdwarf formation.Comment: 30 pages, 10 figures, 11 tables. Accepted for publication in MNRA

    Kepler observations of variability in B-type stars

    Full text link
    The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies characteristic of SPB stars. Seven of these stars also show a few weak, isolated high frequencies and they could be considered as SPB/beta Cep hybrids. In all cases the frequency spectra are quite different from what is seen from ground-based observations. We suggest that this is because most of the low frequencies are modes of high degree which are predicted to be unstable in models of mid-B stars. We find that there are non-pulsating stars within the beta Cep and SPB instability strips. Apart from the pulsating stars, we can identify stars with frequency groupings similar to what is seen in Be stars but which are not Be stars. The origin of the groupings is not clear, but may be related to rotation. We find periodic variations in other stars which we attribute to proximity effects in binary systems or possibly rotational modulation. We find no evidence for pulsating stars between the cool edge of the SPB and the hot edge of the delta Sct instability strips. None of the stars show the broad features which can be attributed to stochastically-excited modes as recently proposed. Among our sample of B stars are two chemically peculiar stars, one of which is a HgMn star showing rotational modulation in the light curve.Comment: 19 pages, 11 figures, 4 table

    MOST detects SPBe pulsations in HD 127756 & HD 217543: Asteroseismic rotation rates independent of vsini

    Full text link
    The MOST (Microvariability and Oscillations of Stars) satellite has discovered SPBe (Slowly Pulsating Be) oscillations in the stars HD 127756 (B1/B2 Vne) and HD 217543 (B3 Vpe). For HD 127756, 30 significant frequencies are identified from 31 days of nearly continuous photometry; for HD 217543, up to 40 significant frequencies from 26 days of data. In both cases, the oscillations fall into three distinct frequency ranges, consistent with models of the stars. The variations are caused by nonradial g-modes (and possibly r-modes) distorted by rapid rotation and excited by the opacity mechanism near the iron opacity bump. A comparison of pulsation models and observed frequency groups yields a rotation frequency for each star, independently of vsini. The rotation rates of these stars, as well as those of the SPBe stars previously discovered by MOST, HD 163868 and β\beta CMi, are all close to their critical values.Comment: 36 pages, 16 figures, 3 tables, accepted for publication in Ap
    corecore