109 research outputs found
How metal films de-wet substrates - identifying the kinetic pathways and energetic driving forces
We study how single-crystal chromium films of uniform thickness on W(110)
substrates are converted to arrays of three-dimensional (3D) Cr islands during
annealing. We use low-energy electron microscopy (LEEM) to directly observe a
kinetic pathway that produces trenches that expose the wetting layer. Adjacent
film steps move simultaneously uphill and downhill relative to the staircase of
atomic steps on the substrate. This step motion thickens the film regions where
steps advance. Where film steps retract, the film thins, eventually exposing
the stable wetting layer. Since our analysis shows that thick Cr films have a
lattice constant close to bulk Cr, we propose that surface and interface stress
provide a possible driving force for the observed morphological instability.
Atomistic simulations and analytic elastic models show that surface and
interface stress can cause a dependence of film energy on thickness that leads
to an instability to simultaneous thinning and thickening. We observe that
de-wetting is also initiated at bunches of substrate steps in two other
systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are
converted into patterns of unidirectional stripes as the trenches that expose
the wetting layer lengthen along the W[001] direction. Finally, we observe how
3D Cr islands form directly during film growth at elevated temperature. The Cr
mesas (wedges) form as Cr film steps advance down the staircase of substrate
steps, another example of the critical role that substrate steps play in 3D
island formation
On the determination of the interaction time of GeV neutrinos in large argon gas TPCs
Next-generation megawatt-scale neutrino beams open the way to studying
neutrino-nucleus scattering resorting, for the first time, to gaseous targets.
This could lead to deeper knowledge of neutrino cross sections in the energy
region between hundreds of MeV and a few GeV, of interest for the upcoming
generation of long-baseline neutrino oscillation experiments. The challenge is,
therefore, to accurately track and (especially) time the particles produced in
neutrino interactions in large and seamless volumes down to few-MeV energies.
We propose to accomplish this through an optically-read time projection chamber
(TPC) filled with high-pressure argon and equipped with both tracking and
timing functions. In this work, we present a detailed study of the time-tagging
capabilities of such a device, based on end-to-end optical simulations that
include the effect of photon propagation, photosensor response, dark-count rate
and pulse reconstruction. We show that the neutrino interaction time could be
reconstructed from the primary-scintillation signal with a precision in the
range 1--2.5~ns () for point-like deposits with energies down to 5~MeV,
and well below 1~ns for minimum-ionizing particle tracks. A discussion on
previous limitations towards such a detection technology, and how they can be
realistically overcome in the near future thanks to recent developments in the
field, is presented (particularly the strong scintillation yields recently
reported for Ar/CF mixtures). The performance presented in our analysis
seems to be well within reach of next-generation neutrino-oscillation
experiments through the instrumentation of the proposed TPC with conventional
reflective materials and a SiPM carpet behind a transparent cathode
The global oscillation network group site survey. II. Results
The Global Oscillation Network Group (GONG) Project will place a network of instruments around the world to observe solar oscillations as continuously as possible for three years. The Project has now chosen the six network sites based on analysis of survey data from fifteen sites around the world. The chosen sites are: Big Bear Solar Observatory, California; Mauna Loa Solar Observatory, Hawaii; Learmonth Solar Observatory, Australia; Udaipur Solar Observatory, India; Observatorio del Teide, Tenerife; and Cerro Tololo Interamerican Observatory, Chile.
Total solar intensity at each site yields information on local cloud cover, extinction coefficient, and transparency fluctuations. In addition, the performance of 192 reasonable components analysis. An accompanying paper describes the analysis methods in detail; here we present the results of both the network and individual site analyses.
The selected network has a duty cycle of 93.3%, in good agreement with numerical simulations. The power spectrum of the network observing window shows a first diurnal sidelobe height of 3 × 10⁻⁴ with respect to the central component, an improvement of a factor of 1300 over a single site. The background level of the network spectrum is lower by a factor of 50 compared to a single-site spectrum
Highly Efficient Amplification of Chronic Wasting Disease Agent by Protein Misfolding Cyclic Amplification with Beads (PMCAb)
Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/− mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility
Ultra-Efficient PrPSc Amplification Highlights Potentialities and Pitfalls of PMCA Technology
In order to investigate the potential of voles to reproduce in vitro the efficiency of prion replication previously observed in vivo, we seeded protein misfolding cyclic amplification (PMCA) reactions with either rodent-adapted Transmissible Spongiform Encephalopathy (TSE) strains or natural TSE isolates. Vole brain homogenates were shown to be a powerful substrate for both homologous or heterologous PMCA, sustaining the efficient amplification of prions from all the prion sources tested. However, after a few serial automated PMCA (saPMCA) rounds, we also observed the appearance of PK-resistant PrPSc in samples containing exclusively unseeded substrate (negative controls), suggesting the possible spontaneous generation of infectious prions during PMCA reactions. As we could not definitively rule out cross-contamination through a posteriori biochemical and biological analyses of de novo generated prions, we decided to replicate the experiments in a different laboratory. Under rigorous prion-free conditions, we did not observe de novo appearance of PrPSc in unseeded samples of M109M and I109I vole substrates, even after many consecutive rounds of saPMCA and working in different PMCA settings. Furthermore, when positive and negative samples were processed together, the appearance of spurious PrPSc in unseeded negative controls suggested that the most likely explanation for the appearance of de novo PrPSc was the occurrence of cross-contamination during saPMCA. Careful analysis of the PMCA process allowed us to identify critical points which are potentially responsible for contamination events. Appropriate technical improvements made it possible to overcome PMCA pitfalls, allowing PrPSc to be reliably amplified up to extremely low dilutions of infected brain homogenate without any false positive results even after many consecutive rounds. Our findings underline the potential drawback of ultrasensitive in vitro prion replication and warn on cautious interpretation when assessing the spontaneous appearance of prions in vitro
The global oscillation network group site survey. II. Results
The Global Oscillation Network Group (GONG) Project will place a network of instruments around the world to observe solar oscillations as continuously as possible for three years. The Project has now chosen the six network sites based on analysis of survey data from fifteen sites around the world. The chosen sites are: Big Bear Solar Observatory, California; Mauna Loa Solar Observatory, Hawaii; Learmonth Solar Observatory, Australia; Udaipur Solar Observatory, India; Observatorio del Teide, Tenerife; and Cerro Tololo Interamerican Observatory, Chile.
Total solar intensity at each site yields information on local cloud cover, extinction coefficient, and transparency fluctuations. In addition, the performance of 192 reasonable components analysis. An accompanying paper describes the analysis methods in detail; here we present the results of both the network and individual site analyses.
The selected network has a duty cycle of 93.3%, in good agreement with numerical simulations. The power spectrum of the network observing window shows a first diurnal sidelobe height of 3 × 10⁻⁴ with respect to the central component, an improvement of a factor of 1300 over a single site. The background level of the network spectrum is lower by a factor of 50 compared to a single-site spectrum
Measurement of the intrinsic hadronic contamination in the NA64−e high-e+/e- purity beam at CERN
We present the measurement of the intrinsic hadronic contamination at the CERN SPS H4 beamline configured to transport electrons and positrons at 100 GeV/c. The analysis, performed using data collected by the NA64-e experiment in 2022, is based on calorimetric measurements, exploiting the different interaction mechanisms of electrons and hadrons in the NA64 detector. We determined the contamination by comparing the results obtained using the nominal electron/positron beamline configuration with those from a dedicated setup, in which only hadrons impinged on the detector. We also obtained an estimate of the relative protons, anti-protons and pions yield by exploiting the different absorption probabilities of these particles in matter. We cross-checked our results with a dedicated Monte Carlo simulation for the hadron production at the primary T2 target, finding a good agreement with the experimental measurements
Prion Protein Modulates Cellular Iron Uptake: A Novel Function with Implications for Prion Disease Pathogenesis
Converging evidence leaves little doubt that a change in the conformation of prion protein (PrPC) from a mainly α-helical to a β-sheet rich PrP-scrapie (PrPSc) form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrPSc, nor the normal function of PrPC is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrPC mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrPC increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP), and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrPC on ferritin iron content is enhanced by stimulating PrPC endocytosis, and reversed by cross-linking PrPC on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP102L decreases ferritin iron content significantly relative to PrPC expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrPC nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrPC in cellular iron uptake and transport to ferritin, and dysfunction of PrPC as a significant contributing factor of brain iron imbalance in prion disorders
Human Resource Flexibility as a Mediating Variable Between High Performance Work Systems and Performance
Much of the human resource management literature has demonstrated the impact of high performance
work systems (HPWS) on organizational performance. A new generation of studies is
emerging in this literature that recommends the inclusion of mediating variables between HPWS
and organizational performance. The increasing rate of dynamism in competitive environments
suggests that measures of employee adaptability should be included as a mechanism that may
explain the relevance of HPWS to firm competitiveness. On a sample of 226 Spanish firms, the
study’s results confirm that HPWS influences performance through its impact on the firm’s
human resource (HR) flexibility
- …