8 research outputs found

    Survival of Staphylococcus aureus exposed to UV radiation on the surface of ceramic tiles coated with TiOâ‚‚

    No full text
    The aim of this study was to determine and compare the antimicrobial activity of UV radiation of wavelength 253.7 nm (used in typical germicidal lamps) against Staphylococcus aureus on the surfaces of conventionally produced white ceramic wall tiles (matt and shiny) and the same tiles coated with TiOâ‚‚ using three different methods: RF diode sputtering, atmospheric pressure chemical vapour deposition (APCVD) and spray pyrolysis deposition (SPD). Results clearly indicate that the bactericidal action of UV radiation is much stronger on the surfaces of tiles coated with TiOâ‚‚ than on the tiles uncovered. The strongest bactericidal effect of UV radiation was found for film prepared by APCVD. Results of experiments for shiny and matt tiles did not differ statistically. The use of ceramic wall tiles coated with TiOâ‚‚ films in hospitals, veterinary clinics, laboratories, food processing plants and other places where UV radiation is applied for disinfection should greatly improve the efficiency of this treatment

    Modeling the effect of temperature on survival rate of Salmonella Enteritidis in yogurt

    No full text
    The aim of the study was to determine the inactivation rates of Salmonella Enteritidis in commercially produced yogurt and to generate primary and secondary mathematical models to predict the behaviour of these bacteria during storage at different temperatures. The samples were inoculated with the mixture of three S. Enteritidis strains and stored at 5℃, 10℃, 15℃, 20℃ and 25℃ for 24 h. The number of salmonellae was determined every two hours. It was found that the number of bacteria decreased linearly with storage time in all samples. Storage temperature and pH of yogurt significantly influenced survival rate of S. Enteritidis (p < 0.05). In samples kept at 5℃ the number of salmonellae decreased at the lowest rate, whereas at 25°C the reduction in number of bacteria was the most dynamic. The natural logarithm of mean inactivation rates of Salmonella calculated from primary model was fitted to two secondary models: linear and polynomial. Equations obtained from both secondary models can be applied as a tool for prediction of inactivation rate of Salmonella in yogurt stored under temperature range from 5 to 25°C; however, polynomial model gave the better fit to the experimental data

    Modeling the effect of temperature on survival rate of Listeria monocytogenes in yogurt

    No full text
    The aim of the study was to (i) evaluate the behavior of Listeria monocytogenes in a commercially produced yogurt, (ii) determine the survival/inactivation rates of L. monocytogenes during cold storage of yogurt and (iii) to generate primary and secondary mathematical models to predict the behavior of these bacteria during storage at different temperatures. The samples of yogurt were inoculated with the mixture of three L. monocytogenes strains and stored at 3, 6, 9, 12 and 15°C for 16 days. The number of listeriae was determined after 0, 1, 2, 3, 5, 7, 9, 12, 14 and 16 days of storage. From each sample a series of decimal dilutions were prepared and plated onto ALOA agar (agar for Listeria according to Ottaviani and Agosti). It was found that applied temperature and storage time significantly influenced the survival rate of listeriae (p<0.01). The number of L. monocytogenes in all the samples decreased linearly with storage time. The slowest decrease in the number of the bacteria was found in the samples stored at 6°C (D-10 value = 243.9 h), whereas the highest reduction in the number of the bacteria was observed in the samples stored at 15°C (D-10 value = 87.0 h). The number of L. monocytogenes was correlated with the pH value of the samples (p<0.01). The natural logarithm of the mean survival/inactivation rates of L. monocytogenes calculated from the primary model was fitted to two secondary models, namely linear and polynomial. Mathematical equations obtained from both secondary models can be applied as a tool for the prediction of the survival/inactivation rate of L. monocytogenes in yogurt stored under temperature range from 3 to 15°C, however, the polynomial model gave a better fit to the experimental data
    corecore