930 research outputs found
Effects of natural covers on soil evaporation of the shelterbelt along the Tarim Desert Highway
The control of soil evaporation is one of important approaches to save water. The artificially simulated evaporation experiments have been conducted in the hinterland of the Taklimakan Desert to reveal the effects of the natural covers on the soil evaporation of the Tarim Desert Highway shelterbelt as well as provide some insights in the efficient utilization of water resources and optimization of irrigation systems. The results showed that (1) All the covers, including the sand deposit, the salt crust, the litter, the sand-litter mixed layer and so on, can significantly inhibit the soil water evaporation. Specifically, the daily evaporation, the total evaporation, and the evaporation rate in covered sands were much smaller than that of sands without cover. The cover inhibition effects increased with the cover thickness. Particularly, the soil evaporation of the covered sands was less affected by external and internal factors than that of the bare sands. Moreover, the variation of daily evaporation of covered sands was smaller than that of bare sands. The cumulative evaporation varied linearly with time in the covered sands whereas it varied logarithmically in the bare sands. In addition, the soil evaporation in the bare sands showed significantly different characteristics in the early and late stages of the evaporation. (2) All the covers exhibited the significant inhibiting effect on the soil evaporation, and the inhibition efficiency increased logarithmically with the cover thickness. However, as the cover thickness was above a certain value, the increase in the inhibition efficiency was slow. Particularly, at a cover thickness of 2 cm, there was no obvious difference in the inhibition efficiency among all kinds of covers. The maximum inhibition efficiency as calculated from the daily evaporation on the first day of irrigation was: sand-litter mixed layer (79.92%) > litter layer (78.96%) > salt crust (75.58%) > sand bed (74.11%), whereas the average inhibiting efficiency as calculated from the cumulative soil evaporation at the end of an irrigation cycle (the fourth day) was: salt crust (67.78%) > sand-litter mixed layer (66.72%) > sand deposit (63.28%) > litter layer (61.74%)
Unusual Location of the Geotail Magnetopause Near Lunar Orbit: A Case Study
The Earth's magnetopause is highly variable in location and shape and is modulated by solar wind conditions. On 8 March 2012, the ARTEMIS probes were located near the tail current sheet when an interplanetary shock arrived under northward interplanetary magnetic field conditions and recorded an abrupt tail compression at ∼(‐60, 0, ‐5) RE in Geocentric Solar Ecliptic coordinate in the deep magnetotail. Approximately 10 minutes later, the probes crossed the magnetopause many times within an hour after the oblique interplanetary shock passed by. The solar wind velocity vector downstream from the shock was not directed along the Sun‐Earth line but had a significant Y component. We propose that the compressed tail was pushed aside by the appreciable solar wind flow in the Y direction. Using a virtual spacecraft in a global magnetohydrodynamic (MHD) simulation, we reproduce the sequence of magnetopause crossings in the X‐Y plane observed by ARTEMIS under oblique shock conditions, demonstrating that the compressed magnetopause is sharply deflected at lunar distances in response to the shock and solar wind VY effects. The results from two different global MHD simulations show that the shocked magnetotail at lunar distances is mainly controlled by the solar wind direction with a timescale of about a quarter hour, which appears to be consistent with the windsock effect. The results also provide some references for investigating interactions between the solar wind/magnetosheath and lunar nearside surface during full moon time intervals, which should not happen in general
Classification and regionalization of the forming environment of windblown sand disasters along the Tarim Desert Highway
Through the systematic field survey and observations, the factor quantification as well as setting the criteria, the sand disaster-forming environment along the Tarim Desert Highway can be divided into four grades by the classification and regionalization based on fuzzy mathematics. The length of the regions with significant sand disaster accounted for 37.1% of the total highway length. Particularly, the area along the Tarim Desert Highway, based on the sand disaster-forming environment classification as well as the difference in the five basic landform units along the highway, combined with the difference of wind regime, can be divided into five regions, in which the length of the regions suffering severe sand damage occupied 64.3% of the total highway length. In addition, the index of disaster formation grade along the highway decreased from north to south, showing a repeated spatial pattern in small length scales
A reporting tool for practice guidelines in healthcare: the RIGHT Statement
The quality of reporting of practice guidelines is often poor and there is no widely accepted guidance or standards for the reporting of practice guidelines in healthcare. An international working group (the RIGHT working group) was therefore established to address this gap. The group followed an existing framework for developing health research reporting guidelines and the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network approach. We developed a checklist and an explanation and elaboration document. The RIGHT checklist includes 22 items that we consider essential for good reporting of practice guidelines. These items encompass basic information (items 1-4), background (items 5-9), evidence (items 10-12), recommendations (items 13-15), review and quality assurance (items 16-17), funding and declaration and management of interests (items 18-19), and other information (items 20-22). The RIGHT checklist can assist developers when reporting their guidelines, support journal editors and peer reviewers when considering guideline reports, and help healthcare practitioners understand and implement a guideline
Assessing the disease burden of Yi people by years of life lost in Shilin county of Yunnan province, China
<p>Abstract</p> <p>Background</p> <p>Years of Life Lost (YLL) is one of the methods used to estimate the duration of time lost due to premature death. While previous studies of disease burden have been reported using YLL, there have been no studies investigating YLL of Yi people in rural China. Yunnan Province ranks first in terms of Yi people in China. This paper uses YLL to estimate the disease burden of Yi people in Shilin county of Yunnan Province. This study aims to address the differentials about YLL between Yi people and Han people for providing useful information for health planning.</p> <p>Methods</p> <p>We applied the Global Burden of Disease (GBD) method created by WHO. YLL rate per 1,000 were calculated from medical death certificates in 2003 in Shilin Yi Nationality Autonomous County (Shilin county).</p> <p>Results</p> <p>The male had greater YLL rate per 1,000 than did the female almost in each age group. It demonstrated a higher premature mortality burden due to injuries in Shilin county. Among the top non-communicable diseases, respiratory diseases are the most common mortality burden. Yi people are still suffering from maternal conditions, with two times the burden rates of Han people. For Yi people, while malignant neoplasm was one of the least burden of disease for male, it was the greatest for female, which is the opposite to Han people.</p> <p>Conclusion</p> <p>Strategies of economic development should be reviewed to enhance the prevention and treatment of injuries, maternal conditions and respiratory diseases for Yi people.</p
Measurement of the Inclusive Jet Cross Section using the Kt algorithm in pp-bar Collisions at sqrt(s) = 1.96 TeV
We report on a measurement of the inclusive jet production cross section in
pp-bar collisions at sqrt{s} = 1.96 TeV using data collected with the upgraded
Collider Detector at Fermilab in Run II (CDF II) corresponding to an integrated
luminosity of 385 pb^-1. Jets are reconstructed using the kt algorithm. The
measurement is carried out for jets with rapidity 0.1 < | yjet | < 0.7 and
transverse momentum in the range 54 < ptjet < 700 GeV/c. The measured cross
section is in good agreement with next-to-leading order perturbative QCD
predictions after the necessary non-perturbative parton-to-hadron corrections
are included.Comment: Submitted to Phys. Rev. Let
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …