10 research outputs found

    Can the structure of dormant cambium and the widths of phloem and xylem increments be used as indicators for tree vitality?

    Get PDF
    We investigated the structure and width of the dormant cambium and of the increments of phloem and xylem of Quercus robur to estimate their potential as indicators for tree vitality. The samples were taken from three woodlands, two in Slovenia [Krakovo forest (KRA) and Murska Suma (MUS)] and one in Croatia [Kobiljak (KOB)], with reported tree decline. The number of dormant cells seems to reflect the initial capacity of the cambium to accomplish cell division. With the exception of two trees at KRA, cell production was always higher on the xylem side than on the phloem side. The annual phloem increments were narrower, less variable among trees and with clear lower and upper limits. With increased cambial cell productivity, the share of the xylem in the total annual radial increment increased following a curvilinear function. In trees with an annual radial increment >3.5 mm, the xylem size represented more than 90 % of the total radial growth. The anatomical variables analyzed show that the most limiting environmental conditions seem to prevail at KRA, whereas the conditions at MUS seem to be most favorable in terms of radial growth. Analysis of the width and structure of xylem and phloem increments, the number of dormant cambial cells and their inter-relationships can provide additional information on the vitality of oaks

    Productivity, Biomass Partitioning, and Energy Yield of Low-Input Short-Rotation American Sycamore (Platanus occidentalis L.) Grown on Marginal Land: Effects of Planting Density and Simulated Drought

    No full text
    Short-rotation woody crops (SRWC) grown for bioenergy production are considered a more sustainable feedstock than food crops such as corn and soybean. However, to be sustainable SRWC should be deployed on land not suitable for agriculture (e.g., marginal lands). Here we quantified productivity and energy yield of four SRWC candidate species grown at different planting densities (1250, 2500, 5000, and 10,000 trees ha−1) under a low-input regime on a marginal site in the Piedmont of North Carolina and responses to reduced water availability. By the end of the first growing season, 75 to 100% tree mortality occurred in all tested species (Liquidambar styraciflua, Liriodendron tulipifera, and Populus nigra) except American sycamore (Platanus occidentalis), the productivity of which was positively affected by planting density, but unaffected by the throughfall reduction treatment. After 4 years of growth, the 10,000 trees ha−1 sycamore treatment produced smaller individual trees but the largest amount of total tree biomass (23.2 ± 0.9 Mg ha−1), which, although greater, was not significantly different from the 5000 trees ha−1 treatment (19.6 ± 1.5 Mg ha−1). The two highest planting density treatments had similar aboveground net primary productivity (ANPPwood) of 7.2 Mg ha−1 year−1. By contrast, in the 1250 and 2500 trees ha−1 treatments, ANPPwood was significantly lower, ranging from 3.4 to 5.4 Mg ha−1 year−1. Stem wood made up a majority of the biomass produced regardless of spacing density, but live branch biomass weight increased with decreasing planting density, comprising up to 31% of total aboveground biomass in the 1250 trees ha−1 treatment. Gross energy yield reached 140 GJ ha−1 year−1 for the 10,000 trees ha−1 treatment. Given this productivity, American sycamore could potentially yield 2400 (±380) L ethanol ha−1 year−1 over the first 4-year rotation. This study demonstrated that of the four species tested, only American sycamore grown on marginal land under low inputs (no fertilizer, no irrigation, limited weed control) had the capacity to successfully establish and maintain SRWC productivity, which might compare favorably with other fast-growing tree and grass species that typically require high inputs

    Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review

    No full text
    corecore