26 research outputs found

    Efficient transplacental IgG transfer in women infected with Zika virus during pregnancy

    Get PDF
    Zika virus (ZIKV) is a newly-identified infectious cause of congenital disease. Transplacental transfer of maternal IgG to the fetus plays an important role in preventing many neonatal infections. However, antibody transfer may also have negative consequences, such as mediating enhancement of flavivirus infections in early life, or trafficking of virus immune complexes to the fetal compartment. ZIKV infection produces placental pathology which could lead to impaired IgG transfer efficiency as occurs in other maternal infections, such as HIV-1 and malaria. In this study, we asked whether ZIKV infection during pregnancy impairs transplacental transfer of IgG. We enrolled pregnant women with fever or rash in a prospective cohort in Vitoria, Brazil during the recent ZIKV epidemic. ZIKV and dengue virus (DENV)-specific IgG, ZIKV and DENV neutralizing antibodies, and routine vaccine antigenspecific IgG were measured in maternal samples collected around delivery and 20 paired cord blood samples. We concluded that 8 of these mothers were infected with ZIKV during pregnancy and 12 were ZIKV-uninfected. The magnitude of flavivirus-specific IgG, neutralizing antibody, and vaccine-elicited IgG were highly correlated between maternal plasma and infant cord blood in both ZIKV-infected and -uninfected mother-infant pairs. Moreover, there was no difference in the magnitude of plasma flavivirus-specific IgG levels between mothers and infants regardless of ZIKV infection status. Our data suggests that maternal ZIKV infection during pregnancy does not impair the efficiency of placental transfer of flavivirus-specific, functional, and vaccine-elicited IgG. These findings have implications for the neonatal outomes of maternal ZIKV infection and optimal administration of antibody-based ZIKV vaccines and therapeutics

    A comparative study on q-deformed fermion oscillators

    Full text link
    In this paper, the algebras, representations, and thermostatistics of four types of fermionic q-oscillator models, called fermionic Newton (FN), Chaichian-Kulish-Ng (CKN), Parthasarathy-Viswanathan-Chaichian (PVC), Viswanathan-Parthasarathy-Jagannathan-Chaichian (VPJC), are discussed. Similarities and differences among the properties of these models are revealed. Particular emphasis is given to the VPJC-oscillators model so that its Fock space representation is analyzed in detail. Possible physical applications of these models are concisely pointed out.Comment: 32 pages, 2 figures, to appear in Int. J. Theor. Phys. (IJTP

    Thermostatistics of deformed bosons and fermions

    Full text link
    Based on the q-deformed oscillator algebra, we study the behavior of the mean occupation number and its analogies with intermediate statistics and we obtain an expression in terms of an infinite continued fraction, thus clarifying successive approximations. In this framework, we study the thermostatistics of q-deformed bosons and fermions and show that thermodynamics can be built on the formalism of q-calculus. The entire structure of thermodynamics is preserved if ordinary derivatives are replaced by the use of an appropriate Jackson derivative and q-integral. Moreover, we derive the most important thermodynamic functions and we study the q-boson and q-fermion ideal gas in the thermodynamic limit.Comment: 14 pages, 2 figure

    Not Available

    No full text
    Not AvailablePlease see attachmentNot Availabl
    corecore