45 research outputs found

    Effect of hyperbaric oxygen on mesenchymal stem cells for lumbar fusion in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperbaric oxygen (HBO) therapy has been proved in improving bone healing, but its effects on mesenchymal stem cells (MSCs) <it>in vivo </it>is not clear. The aims of this study are to clarify whether the HBO therapy has the same enhancing effect on MSCs with regard to bone formation and maturation and to ascertain whether the transplanted MSCs survive in the grafted area and contribute to new bone formation.</p> <p>Methods</p> <p>Twenty-three adult rabbits underwent posterolateral fusion at L4-L5 level. The animals were divided into three groups according to the material implanted and subsequent treatment: (1) Alginate carrier (n = 6); (2) Alginate-MSCs composite (n = 11); and (3) Alginate-MSCs composite with HBO therapy (n = 6). After 12 weeks, spine fusion was examined using radiographic examination, manual testing, and histological examination. Using a PKH fluorescence labeling system, whether the transplanted MSCs survived and contributed to new bone formation in the grafted area after HBO therapy was also examined.</p> <p>Results</p> <p>The bilateral fusion areas in each animal were evaluated independently. By radiographic examination and manual palpation, union for the Alginate, Alginate-MSCs, and Alginate-MSCs-HBO groups was 0 of 12, 10 of 22, and 6 of 12 respectively. The difference between the Alginate-MSCs and Alginate-MSCs-HBO groups was not significant (P = 0.7997). The fluorescence microscopy histological analysis indicated that the transplanted PKH67-labeled MSCs survived and partly contributed to new bone formation in the grafted area.</p> <p>Conclusions</p> <p>This study demonstrated that the preconditioned MSCs could survive and yield bone formation in the grafted area. HBO therapy did not enhance the osteogenic ability of MSCs and improve the success of spine fusion in the rabbit model. Although there was no significant effect of HBO therapy on MSCs for spine fusion, the study encourages us to research a more basic approach for determining the optimal oxygen tension and pressure that are required to maintain and enhance the osteogenic ability of preconditioned MSCs. Further controlled <it>in vivo </it>and <it>in vitro </it>studies are required for achieving a better understanding of the effect of HBO treatment on MSCs.</p

    Augmentation of osteochondral repair with hyperbaric oxygenation: a rabbit study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current treatments for osteochondral injuries often result in suboptimal healing. We hypothesized that the combination of hyperbaric oxygen (HBO) and fibrin would be superior to either method alone in treating full-thickness osteochondral defects.</p> <p>Methods</p> <p>Osteochondral repair was evaluated in 4 treatment groups (control, fibrin, HBO, and HBO+fibrin groups) at 2-12 weeks after surgical injury. Forty adult male New Zealand white rabbits underwent arthrotomy and osteochondral surgery on both knees. Two osteochondral defects were created in each femoral condyle, one in a weight-bearing area and the other in a non-weight-bearing area. An exogenous fibrin clot was placed in each defect in the right knee. Left knee defects were left empty. Half of the rabbits then underwent hyperbaric oxygen therapy. The defects in the 4 treatment groups were then examined histologically at 2, 4, 6, 8, and 12 weeks after surgery.</p> <p>Results</p> <p>The HBO+fibrin group showed more rapid and more uniform repair than the control and fibrin only groups, but was not significantly different from the group receiving HBO alone. In the 2 HBO groups, organized repair and good integration with adjacent cartilage were seen at 8 weeks; complete regeneration was observed at 12 weeks.</p> <p>Conclusions</p> <p>HBO significantly accelerated the repair of osteochondral defects in this rabbit model; however, the addition of fibrin produced no further improvement.</p
    corecore