61 research outputs found
PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy
The satellite-borne experiment PAMELA has been used to make a new measurement
of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which
extends previously published measurements down to 60 MeV and up to 180 GeV in
kinetic energy. During 850 days of data acquisition approximately 1500
antiprotons were observed. The measurements are consistent with purely
secondary production of antiprotons in the galaxy. More precise secondary
production models are required for a complete interpretation of the results.Comment: 11 pages, 3 figures, 1 table. Accepted for publication in Physical
Review Letter
Characterization of PTZ-Induced Seizure Susceptibility in a Down Syndrome Mouse Model That Overexpresses CSTB
Down syndrome (DS) is a complex genetic syndrome characterized by intellectual disability, dysmorphism and variable additional physiological traits. Current research progress has begun to decipher the neural mechanisms underlying cognitive impairment, leading to new therapeutic perspectives. Pentylenetetrazol (PTZ) has recently been found to have positive effects on learning and memory capacities of a DS mouse model and is foreseen to treat DS patients. But PTZ is also known to be a convulsant drug at higher dose and DS persons are more prone to epileptic seizures than the general population. This raises concerns over what long-term effects of treatment might be in the DS population. The cause of increased propensity for epilepsy in the DS population and which Hsa21 gene(s) are implicated remain unknown. Among Hsa21 candidate genes in epilepsy, CSTB, coding for the cystein protease inhibitor cystatin B, is involved in progressive myoclonus epilepsy and ataxia in both mice and human. Thus we aim to evaluate the effect of an increase in Cstb gene dosage on spontaneous epileptic activity and susceptibility to PTZ-induced seizure. To this end we generated a new mouse model trisomic for Cstb by homologous recombination. We verified that increasing copy number of Cstb from Trisomy (Ts) to Tetrasomy (Tt) was driving overexpression of the gene in the brain, we checked transgenic animals for presence of locomotor activity and electroencephalogram (EEG) abnormalities characteristic of myoclonic epilepsy and we tested if those animals were prone to PTZ-induced seizure. Overall, the results of the analysis shows that an increase in Cstb does not induce any spontaneous epileptic activity and neither increase or decrease the propensity of Ts and Tt mice to myoclonic seizures suggesting that Ctsb dosage should not interfere with PTZ-treatment
Anisotropic shear viscosity in nematic liquid crystals: new optical measurement method
We propose a new optical method and the experimental set-up for measuring the anisotropic shear viscosities of nematic liquid crystals (LCs). LC shear viscosities can be optimized to improve liquid crystal display (LCD) response times, e. g. in vertical aligned nematic (VAN) or bistable nematic displays (BND). In this case a strong back-flow effect essentially determines the LCD dynamic characteristics. A number of shear viscosity coefficients defines the LCD response time. The proposed method is based on the special type of a shear flow, namely, the decay flow, in the LC cell with suitably treated substrates instead of magnetic or electric field application. A linear regime of a quasi-stationary director motion induced by a pressure difference and a proper configuration of a LC cell produces decay flow conditions in the LC cell. We determine three principal shear viscosity coefficients by measuring relative time variations of the intensity of the light passed through LC cells. The shear viscosity coefficient measurements provide a new opportunity for the development of new LC mixtures with fast response times in VAN, BND and other important LCD types
Polyurea-coated glass-fibre-reinforced laminate under high-speed impact: experimental study
One of the promising methods to increase the resistance of polymer-matrix composite materials to impact damage is the use of protective coatings. In this work, the effect of polyurea coating on impact-performance parameters of a woven glass-fibre-reinforced laminate is studied. The study was performed on a specially developed ballistic experimental test rig employing a pneumatic gun. Eleven polymer composite targets with dimensions 200 mm x 300 mm x 8 mm were impacted orthogonally with a steel projectile with 23.8 mm diameter and weight 54.7 g in the range of the impact speed up to 150 m/s. A comparative assessment of the ballistic limit for targets with a 1.2 mm protective coating on the front and rear faces of the target, as well as for samples without any protective coating, was performed. The impact process was captured using two high-speed cameras for filming the front and top views at 25,000 frames per second. Experimental data on the ballistic limit for uncoated and polyurea coated fiberglass plates on the front and back surfaces were obtained. It was shown that 1.2 mm thick coating on the face surface increases the ballistic limit by 20%. The nature of the damage of the GRP base plate and coating has been analyzed. The obtained data can be used for validation of numerical models of ballistic impacts of polyurea-coated laminates
Time Dependence of the electron and positron components of the cosmic radiation measured by the PAMELA experiment between July 2006 and December 2015
Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration, and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) until the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field
- …