8 research outputs found

    Desmoglein 3, via an Interaction with E-cadherin, Is Associated with Activation of Src

    Get PDF
    Desmoglein 3 (Dsg3), a desmosomal adhesion protein, is expressed in basal and immediate suprabasal layers of skin and across the entire stratified squamous epithelium of oral mucosa. However, increasing evidence suggests that the role of Dsg3 may involve more than just cell-cell adhesion.To determine possible additional roles of Dsg3 during epithelial cell adhesion we used overexpression of full-length human Dsg3 cDNA, and RNAi-mediated knockdown of this molecule in various epithelial cell types. Overexpression of Dsg3 resulted in a reduced level of E-cadherin but a colocalisation with the E-cadherin-catenin complex of the adherens junctions. Concomitantly these transfected cells exhibited marked migratory capacity and the formation of filopodial protrusions. These latter events are consistent with Src activation and, indeed, Src-specific inhibition reversed these phenotypes. Moreover Dsg3 knockdown, which also reversed the decreased level of E-cadherin, partially blocked Src phosphorylation.Our data are consistent with the possibility that Dsg3, as an up-stream regulator of Src activity, helps regulate adherens junction formation

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Use of photoactivation and photobleaching to monitor the dynamic regulation of E-cadherin at the plasma membrane

    Get PDF
    The dynamic control of E-cadherin is critical for establishing and maintaining cell-cell junctions in epithelial cells. The concentration of E-cadherin molecules at adherens junctions (AJs) is regulated by lateral movement of E-cadherin within the plasma membrane and endocytosis. Here we set out to study the interplay between these processes and their contribution to E-cadherin dynamics. Using photoactivation (PA) and fluorescence recovery after photobleaching (FRAP), we were able to monitor the fate of E-cadherin molecules within the plasma membrane. Our results suggest that the motility of E-cadherin within and away from the cell surface are not exclusive or independent mechanisms and there is a fine balance between the two which, when perturbed, can have dramatic effects on the regulation of AJs

    The role of eye-associated lymphoid tissue in corneal immune protection

    No full text
    Because the cornea is optimized for refraction, it relies on supporting tissues for moistening and nutrition and in particular for immune protection. Its main support tissue is the conjunctiva, in addition to the lacrimal gland, the latter which provides soluble mediators via the tear film. The cornea and conjunctiva constitute a moist mucosal surface and there is increasing evidence that apart from innate defence mechanisms, also lymphoid cells contribute to the normal homeostasis of the corneal surface. A Medline-based literature search was performed in order to review the existing literature on the existence, composition and functions of mucosa-associated lymphoid tissue (MALT) at the ocular surface for corneal protection. The existence of lymphoid cells at the ocular surface and appendage has been known for many years, but for a long time they were believed erroneously to be inflammatory cells. More recent research has shown that in addition to the known presence of lymphoid cells in the lacrimal gland, they also form MALT in the conjunctiva as conjunctiva-associated lymphoid tissue (CALT) and in the lacrimal drainage system as lacrimal drainage-associated lymphoid tissue (LDALT). Together this constitutes an eye-associated lymphoid tissue (EALT), which is a new component of the mucosal immune system of the body. When the topographical distribution of CALT is projected onto the ocular surface, it overlies the cornea during eye closure and is hence in a suitable position to assist the corneal immune protection during blinking and overnight. It can detect corneal antigens and prime respective effector cells, or distribute protective factors as secretory IgA

    Personalized diagnosis and therapy.

    No full text
    Personalized medicine, i.e., the use of information about a person’s genes, proteins, metabolites, and environment to prevent, diagnose, and treat disease, has been much talked about in recent years. So some observers are wondering what the excitement is all about cumulating in the following statement: “Personalized health care is nothing new. Doctors have always tried to fit the therapy to the patient’s need if possible.” But what has happened more recently is that one has now begun to go a level deeper, i.e., to explore the biology of the disease and its treatment at the molecular level. However, molecular medicine does not per se define personalized medicine, but the molecular tools are important as they should enable greater relevance in the information provided by corresponding diagnostic tests (see below) (Edwards et al. 2008; Weedon et al. 2006; Romeo et al. 2007; Hegel et al. 1999; Wildin et al. 2001; Grant et al. 2006; Rothman and Greenland 2005; Raeder et al. 2006; Hegele et al. 2000; Capell and Collins 2006; Delepine et al. 2000; Janssens et al. 2006; Xiayan and Legido-Quigley 2008; Figeys and Pinto 2001; Müller 2002, 2010; Pearson et al. 2007; Janssens et al. 2008; Risch and Merikangas 1996; Janssens and van Duijn 2008; McCarthy 2003; McCarthy et al. 2003; Stumvoll et al. 2005; Lyssenko et al. 2005; Florez et al. 2003)
    corecore