7 research outputs found

    Application of pareto optimality to linear models with errors-in-all-variables

    No full text
    In some geodetic and geoinformatic parametric modeling, the objectives to be minimized are often expressed in different forms, resulting in different parametric values for the estimated parameters at non-zero residuals. Sometimes, these objectives may compete in a Pareto sense, namely a small change in the parameters results in the increase of one objective and a decrease of the other, as frequently occurs in multiobjective problems. Such is the case with errors-in-all-variables (EIV) models, e.g., in the geodetic and photogrammetric coordinate transformation problems often solved using total least squares solution (TLS) as opposed to ordinary least squares solution (OLS). In this contribution, the application of Pareto optimality to solving parameter estimation for linear models with EIV is presented. The method is tested to solve two well-known geodetic problems of linear regression and linear conformal coordinate transformation. The results are compared with those from OLS, Reduced Major Axis Regression (TLS solution), and the least geometric mean deviation (GMD) approach. It is shown that the TLS and GMD solutions applied to the EIV models are just special cases of the Pareto optimal solution, since both of them belong to the Pareto-set of the problems. The Pareto balanced optimum (PBO) solution as a member of this Pareto optimal solution set has special features and is numerically equal to the GMD solution

    Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge

    No full text
    Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset
    corecore