24 research outputs found

    TTFields alone and in combination with chemotherapeutic agents effectively reduce the viability of MDR cell sub-lines that over-express ABC transporters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure of cancer cells to chemotherapeutic agents may result in reduced sensitivity to structurally unrelated agents, a phenomenon known as multidrug resistance, MDR. The purpose of this study is to investigate cell growth inhibition of wild type and the corresponding MDR cells by Tumor Treating Fields - TTFields, a new cancer treatment modality that is free of systemic toxicity. The TTFields were applied alone and in combination with paclitaxel and doxorubicin.</p> <p>Methods</p> <p>Three pairs of wild type/MDR cell lines, having resistivity resulting from over-expression of ABC transporters, were studied: a clonal derivative (C11) of parental Chinese hamster ovary AA8 cells and their emetine-resistant sub-line Emt<sup>R1</sup>; human breast cancer cells MCF-7 and their mitoxantrone-resistant sub lines MCF-7/Mx and human breast cancer cells MDA-MB-231 and their doxorubicin resistant MDA-MB-231/Dox cells. TTFields were applied for 72 hours with and without the chemotherapeutic agents. The numbers of viable cells in the treated cultures and the untreated control groups were determined using the XTT assay. Student t-test was applied to asses the significance of the differences between results obtained for each of the three cell pairs.</p> <p>Results</p> <p>TTFields caused a similar reduction in the number of viable cells of wild type and MDR cells. Treatments by TTFields/drug combinations resulted in a similar increased reduction in cell survival of wild type and MDR cells. TTFields had no effect on intracellular doxorubicin accumulation in both wild type and MDR cells.</p> <p>Conclusions</p> <p>The results indicate that TTFields alone and in combination with paclitaxel and doxorubicin effectively reduce the viability of both wild type and MDR cell sub-lines and thus can potentially be used as an effective treatment of drug resistant tumors.</p

    Dissociation between force and maximal Na+, K+-ATPase activity in rat fast-twitch skeletal muscle with fatiguing in vitro stimulation

    No full text
    This study investigated whether high frequency in vitro stimulation of rat fast-twitch extensor digitorum longus muscle depresses Na+, K+-ATPase (NKA) activity as measured by the maximal in vitro 3-O-MFPase assay. EDL muscles subjected to 10 s continuous 100 Hz stimulation reduced tetanic force by 51.8 +/- 5.1% which recovered to 81.2 +/- 6.1% after 1 min and remained stable over 1 h recovery period. A second bout reduced force by 50.3 +/- 3.8% of initial but had no eVect on 3-O-MFPase activity. Three minutes of intermittent stimulation (1 s at 100 Hz and 4 s recovery) resulted in 87.0 +/- 2.8% decline force with slow recovery (62.7 +/- 5.8% of initial after 1 h). The second 3-min bout reduced force by 83.3 +/- 3.6% of initial with no change in maximal 3-O-MFPase activity. These Wndings contrast previous human studies where fatiguing voluntary exercise depresses maximal NKA activity. This suggests that NKA in rat fast-twitch muscle is resistant to fatigue-induced inactivation under these conditions tions. Furthermore, the loss of force with fatigue was not related to depressed maximal NKA activity

    Evidence for a Role of Progesterone in Menstrual Cycle-Related Variability in Prepulse Inhibition in Healthy Young Women

    No full text
    Prepulse inhibition (PPI) of the startle response is sensitive to sex, with healthy young women showing less PPI compared with age-matched men, and varies according to the menstrual cycle phase in women. Relatively less is known regarding sex and hormonal influences in prepulse facilitation (PPF). Menstrual phase-related variability in PPI is suggested to be mediated by fluctuating estrogen level, based on the observations of more PPI in women during the follicular, relative to the luteal, phase. No study has directly assessed the relationship between fluctuating hormones and PPI or PPF levels over the human ovarian cycle. To examine the roles of circulating ovarian hormones in PPI and PPF, 16 non-smoking regularly menstruating healthy women were tested during both the follicular and luteal phases on PPI and PPF and provided saliva samples for measurement of 17β-estradiol (estrogen), progesterone and testosterone. The results showed higher levels of 17β-estradiol and progesterone during the luteal, relative to the follicular, phase; and more PPI during the follicular phase and more PPF during the luteal phase with comparable startle amplitude and habituation during the two phases. A larger increase in progesterone was associated with a smaller decrease in PPI from the follicular to the luteal phase. No significant associations were found between changes in PPI/PPF and estrogen levels. The findings confirm lower PPI during the luteal, compared with the follicular, phase and suggest a role for progesterone, more specifically an antipsychotic-like PPI-restoration action of progesterone, during the luteal phase in PPI of young women

    Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia

    Full text link
    Previously the NMDA (N-methyl-D-aspartate) receptor (NMDAR) antagonist ketamine was shown to disrupt generation of the auditory event-related potential (ERP) mismatch negativity (MMN) and the performance of an 'AX'-type continuous performance test (AX-CPT)--measures of auditory and visual context-dependent information processing--in a similar manner as observed in schizophrenia. This placebo-controlled study investigated effects of the 5-HT(2A) receptor agonist psilocybin on the same measures in 18 healthy volunteers. Psilocybin administration induced significant performance deficits in the AX-CPT, but failed to reduce MMN generation significantly. These results indirectly support evidence that deficient MMN generation in schizophrenia may be a relatively distinct manifestation of deficient NMDAR functioning. In contrast, secondary pharmacological effects shared by NMDAR antagonists and the 5-HT(2A) agonist (ie disruption of glutamatergic neurotransmission) may be the mechanism underlying impairments in AX-CPT performance observed during both psilocybin and ketamine administration. Comparable deficits in schizophrenia may result from independent dysfunctions of 5-HT(2A) and NMDAR-related neurotransmission
    corecore