13 research outputs found

    Cytoskeletal protein kinases: titin and its relations in mechanosensing

    Get PDF
    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation

    Modulation of the effects of tropomyosin on actin and myosin conformational changes by troponin and Ca2+.

    No full text
    The molecular mechanisms by which troponin (TN)-tropomyosin (TM) regulates the myosin ATPase cycle were investigated using fluorescent probes specifically bound to Cys36 of TM, Cys707 of myosin subfragment-1, and Cys374 of actin incorporated into ghost muscle fibers. Intermediate states of actomyosin were simulated by using nucleotides and non-hydrolysable ATP analogs. Multistep changes in mobility and spatial arrangement of SH1 helix of myosin motor domain and actin subdomain-1 during the ATPase cycle were observed. Each intermediate state of actomyosin induced a definite conformational state and specific position of TM strands on the surface of thin filament. TM increased the amplitude of myosin SH1 helix and actin subdomain-1 movements at transition from weak- to strong-binding states shifting to the center of thin filament at strong-binding and to the periphery of thin filament at weak-binding states. TN modulated those movements in a capital ES, Cyrillicsmall a, Cyrillic(2+)-dependent manner. At high-Ca(2+), TN enhanced the effect of TM on SH1 helix and subdomain-1 movements by transferring TM further to the center of thin filament at strong-binding states. In contrast, at low-Ca(2+), TN inhibited the effect of TM movements, "freezing" actin structure in "OFF" state and TM in the position typical for weak-binding states, resulting in disturbing the interplay of actin and myosin

    The effect of the dilated cardiomyopathy-causing Glu40Lys TPM1 mutation on actin-myosin interactions during the ATPase cycle.

    No full text
    Dilated cardiomyopathy (DCM), characterized by cardiac dilatation and contractile dysfunction, is a major cause of heart failure. DCM can result from mutations in the gene encoding cardiac α-tropomyosin (TM). In order to understand how the dilated cardiomyopathy-causing Glu40Lys mutation in TM affects actomyosin interactions, thin filaments have been reconstituted in muscle ghost fibers by incorporation of labeled Cys707 of myosin subfragment-1 and Cys374 of actin with fluorescent probe 1.5-IAEDANS and α-tropomyosin (wild-type or Glu40Lys mutant). For the first time, the effect of these α-tropomyosins on the mobility and rotation of subdomain-1 of actin and the SH1 helix of myosin subfragment-1 during the ATP hydrolysis cycle have been demonstrated directly by polarized fluorimetry. The Glu40Lys mutant TM inhibited these movements at the transition from AM(∗∗)·ADP·Pi to AM state, indicating a decrease of the proportion of the strong-binding sub-states in the actomyosin population. These structural changes are likely to underlie the contractile deficit observed in human dilated cardiomyopathy

    The effect of the dilated cardiomyopathy-causing mutation Glu54Lys of alpha-tropomyosin on actin-myosin interactions during the ATPase cycle.

    No full text
    In order to understand how the Glu54Lys mutation of alpha-tropomyosin affects actomyosin interactions, we labeled SH1 helix of myosin subfragment-1 (S1) and the actin subdomain-1 with fluorescent probes. These proteins were incorporated into ghost muscle fibers and their conformational states were monitored during the ATPase cycle by measuring polarized fluorescence. The addition of wild-type alpha-tropomyosin to actin filaments increases the amplitude of the SH1 helix and subdomain-1 movements during the ATPase cycle, indicating the enhancement of the efficiency of work of each cross-bridge. The Glu54Lys mutation inhibits this effect. The Glu54Lys mutation also results in the coupling of the weak-binding sub-state of S1 to the strong-binding sub-state of actin thus altering the concerted conformational changes during the ATPase cycle. We suggest that these alterations will result in reduced force production, which is likely to underlie at least in part the contractile deficit observed in human dilated cardiomyopathy

    Molecular mechanisms of dysfunction of muscle fibres associated with Glu139 deletion in TPM2 gene

    No full text
    Deletion of Glu139 in β-tropomyosin caused by a point mutation in TPM2 gene is associated with cap myopathy characterized by high myofilament Ca2+-sensitivity and muscle weakness. To reveal the mechanism of these disorders at molecular level, mobility and spatial rearrangements of actin, tropomyosin and the myosin heads at different stages of actomyosin cycle in reconstituted single ghost fibres were investigated by polarized fluorescence microscopy. The mutation did not alter tropomyosin's affinity for actin but increased strongly the flexibility of tropomyosin and kept its strands near the inner domain of actin. The ability of troponin to switch actin monomers "on" and "off" at high and low Ca2+, respectively, was increased, and the movement of tropomyosin towards the blocked position at low Ca2+ was inhibited, presumably causing higher Ca2+-sensitivity. The mutation decreased also the amount of the myosin heads which bound strongly to actin at high Ca2+ and increased the number of these heads at relaxation; this may contribute to contractures and muscle weakness

    Gly126Arg substitution causes anomalous behaviour of α-skeletal and β-smooth tropomyosins during the ATPase cycle.

    No full text
    To investigate how TM stabilization induced by the Gly126Arg mutation in skeletal α-TM or in smooth muscle β-TM affects the flexibility of TMs and their position on troponin-free thin filaments, we labelled the recombinant wild type and mutant TMs with 5-IAF and F-actin with FITC-phalloidin, incorporated them into ghost muscle fibres and studied polarized fluorescence at different stages of the ATPase cycle. It has been shown that in the myosin- and troponin-free filaments the Gly126Arg mutation causes a shift of TM strands towards the outer domain of actin, reduces the number of switched on actin monomers and decreases the rigidity of the C-terminus of α-TM and increases the rigidity of the N-terminus of β-TMs. The binding of myosin subfragment-1 to the filaments shifted the wild type TMs towards the inner domain of actin, decreased the flexibility of both terminal parts of TMs, and increased the number of switched on actin monomers. Multistep alterations in the position of α- and β-TMs and actin monomers in the filaments and in the flexibility of TMs and F-actin during the ATPase cycle were observed. The Gly126Arg mutation uncouples a correlation between the position of TM and the number of the switched on actin monomers in the filaments

    Gly126Arg substitution causes anomalous behaviour of α-skeletal and β-smooth tropomyosins during the ATPase cycle.

    No full text
    To investigate how TM stabilization induced by the Gly126Arg mutation in skeletal α-TM or in smooth muscle β-TM affects the flexibility of TMs and their position on troponin-free thin filaments, we labelled the recombinant wild type and mutant TMs with 5-IAF and F-actin with FITC-phalloidin, incorporated them into ghost muscle fibres and studied polarized fluorescence at different stages of the ATPase cycle. It has been shown that in the myosin- and troponin-free filaments the Gly126Arg mutation causes a shift of TM strands towards the outer domain of actin, reduces the number of switched on actin monomers and decreases the rigidity of the C-terminus of α-TM and increases the rigidity of the N-terminus of β-TMs. The binding of myosin subfragment-1 to the filaments shifted the wild type TMs towards the inner domain of actin, decreased the flexibility of both terminal parts of TMs, and increased the number of switched on actin monomers. Multistep alterations in the position of α- and β-TMs and actin monomers in the filaments and in the flexibility of TMs and F-actin during the ATPase cycle were observed. The Gly126Arg mutation uncouples a correlation between the position of TM and the number of the switched on actin monomers in the filaments

    Molecular mechanisms of dysfunction of muscle fibres associated with Glu139 deletion in TPM2 gene

    No full text
    Deletion of Glu139 in β-tropomyosin caused by a point mutation in TPM2 gene is associated with cap myopathy characterized by high myofilament Ca2+-sensitivity and muscle weakness. To reveal the mechanism of these disorders at molecular level, mobility and spatial rearrangements of actin, tropomyosin and the myosin heads at different stages of actomyosin cycle in reconstituted single ghost fibres were investigated by polarized fluorescence microscopy. The mutation did not alter tropomyosin's affinity for actin but increased strongly the flexibility of tropomyosin and kept its strands near the inner domain of actin. The ability of troponin to switch actin monomers "on" and "off" at high and low Ca2+, respectively, was increased, and the movement of tropomyosin towards the blocked position at low Ca2+ was inhibited, presumably causing higher Ca2+-sensitivity. The mutation decreased also the amount of the myosin heads which bound strongly to actin at high Ca2+ and increased the number of these heads at relaxation; this may contribute to contractures and muscle weakness

    The reason for a high Ca2+-sensitivity associated with Arg91Gly substitution in TPM2 gene is the abnormal behavior and high flexibility of tropomyosin during the ATPase cycle

    No full text
    Substitution of Arg for Gly residue in 91th position in β-tropomyosin caused by a point mutation in TPM2 gene is associated with distal arthrogryposis, characterized by a high Ca2+-sensitivity of myofilament and contracture syndrome. To understand the mechanisms of this defect, we studied multistep changes in mobility and spatial arrangement of tropomyosin, actin and myosin heads during the ATPase cycle in reconstituted ghost fibres, using the polarized fluorescence microscopy. The mutation was shown to markedly decrease the bending stiffness of β-tropomyosin in the thin filaments. In the absence of the myosin heads the mutation did not alter the ability of troponin to shift tropomyosin to the blocked position and to switch actin monomers off at low Ca2+. During the ATPase cycle the movement of the mutant tropomyosin is restrained, it is located near the open position, which allows strong binding of the myosin heads to actin even at low Ca2+. This may be the reason for both high Ca2+-sensitivity and contractures associated with the Arg91Gly mutation. The use of reagents that decrease the Ca2+sensitivity of the troponin complex may not be appropriate to restore muscle function in patients with this mutation

    The reason for a high Ca2+-sensitivity associated with Arg91Gly substitution in TPM2 gene is the abnormal behavior and high flexibility of tropomyosin during the ATPase cycle

    No full text
    Substitution of Arg for Gly residue in 91th position in β-tropomyosin caused by a point mutation in TPM2 gene is associated with distal arthrogryposis, characterized by a high Ca2+-sensitivity of myofilament and contracture syndrome. To understand the mechanisms of this defect, we studied multistep changes in mobility and spatial arrangement of tropomyosin, actin and myosin heads during the ATPase cycle in reconstituted ghost fibres, using the polarized fluorescence microscopy. The mutation was shown to markedly decrease the bending stiffness of β-tropomyosin in the thin filaments. In the absence of the myosin heads the mutation did not alter the ability of troponin to shift tropomyosin to the blocked position and to switch actin monomers off at low Ca2+. During the ATPase cycle the movement of the mutant tropomyosin is restrained, it is located near the open position, which allows strong binding of the myosin heads to actin even at low Ca2+. This may be the reason for both high Ca2+-sensitivity and contractures associated with the Arg91Gly mutation. The use of reagents that decrease the Ca2+sensitivity of the troponin complex may not be appropriate to restore muscle function in patients with this mutation
    corecore