9,951 research outputs found

    Solution of Some Integrable One-Dimensional Quantum Systems

    Get PDF
    In this paper, we investigate a family of one-dimensional multi-component quantum many-body systems. The interaction is an exchange interaction based on the familiar family of integrable systems which includes the inverse square potential. We show these systems to be integrable, and exploit this integrability to completely determine the spectrum including degeneracy, and thus the thermodynamics. The periodic inverse square case is worked out explicitly. Next, we show that in the limit of strong interaction the "spin" degrees of freedom decouple. Taking this limit for our example, we obtain a complete solution to a lattice system introduced recently by Shastry, and Haldane; our solution reproduces the numerical results. Finally, we emphasize the simple explanation for the high multiplicities found in this model

    Solutions to the Multi-Component 1/R Hubbard Model

    Full text link
    In this work we introduce one dimensional multi-component Hubbard model of 1/r hopping and U on-site energy. The wavefunctions, the spectrum and the thermodynamics are studied for this model in the strong interaction limit U=U=\infty. In this limit, the system is a special example of SU(N)SU(N) Luttinger liquids, exhibiting spin-charge separation in the full Hilbert space. Speculations on the physical properties of the model at finite on-site energy are also discussed.Comment: 9 pages, revtex, Princeton-May1

    Conservation laws in the continuum 1/r21/r^2 systems

    Full text link
    We study the conservation laws of both the classical and the quantum mechanical continuum 1/r21/r^2 type systems. For the classical case, we introduce new integrals of motion along the recent ideas of Shastry and Sutherland (SS), supplementing the usual integrals of motion constructed much earlier by Moser. We show by explicit construction that one set of integrals can be related algebraically to the other. The difference of these two sets of integrals then gives rise to yet another complete set of integrals of motion. For the quantum case, we first need to resum the integrals proposed by Calogero, Marchioro and Ragnisco. We give a diagrammatic construction scheme for these new integrals, which are the quantum analogues of the classical traces. Again we show that there is a relationship between these new integrals and the quantum integrals of SS by explicit construction.Comment: 19 RevTeX 3.0 pages with 2 PS-figures include

    Exact Results of the 1D 1/r21/r^2 Supersymmetric t-J Model without Translational Invariance

    Full text link
    In this work, we continue the study of the supersymmetric t-J model with 1/r^2 hopping and exchange without translational invariance. A set of Jastrow wavefunctions are obtained for the system, with eigenenergies explicitly calculated. The ground state of the t-J model is included in this set of wavefunctions. The spectrum of this t-J model consists of equal-distant energy levels which are highly degenerate.Comment: 14 pages, Late

    Correlations in an expanding gas of hard-core bosons

    Full text link
    We consider a longitudinal expansion of a one-dimensional gas of hard-core bosons suddenly released from a trap. We show that the broken translational invariance in the initial state of the system is encoded in correlations between the bosonic occupation numbers in the momentum space. The correlations are protected by the integrability and exhibit no relaxation during the expansion

    Density Correlation Functions in Calogero Sutherland Models

    Get PDF
    Using arguments from two dimensional Yang-Mills theory and the collective coordinate formulation of the Calogero-Sutherland model, we conjecture the dynamical density correlation function for coupling ll and 1/l1/l, where ll is an integer. We present overwhelming evidence that the conjecture is indeed correct.Comment: 12 pages phyzzx, CERN-TH/94.7243 One reference change

    Exact Solution of Heisenberg-liquid models with long-range coupling

    Full text link
    We present the exact solution of two Heisenberg-liquid models of particles with arbitrary spin SS interacting via a hyperbolic long-range potential. In one model the spin-spin coupling has the simple antiferromagnetic Heisenberg exchange form, while for the other model the interaction is of the ferromagnetic Babujian-Takhatajan type. It is found that the Bethe ansatz equations of these models have a similar structure to that of the Babujian-Takhatajan spin chain. We also conjecture the integrability of a third new spin-lattice model with long-range interaction.Comment: 7pages Revte
    corecore