82,877 research outputs found

    A Phone Learning Model for Enhancing Productivity of Visually Impaired Civil Servants

    Get PDF
    Phone-based learning in civil service is the use of voice technologies to deliver learning and capacity building training services to government employees. The Internet revolution and advancement in Information and Communications Technology (ICT) have given rise to online and remote staff training for the purpose of enhancing workers productivity. The need for civil servants in Nigeria to develop capacity that will enhance knowledge is a key requirement to having competitive advantage in the work place. Existing online learning platforms (such as web-based learning, mobile learning, etc) did not consider the plight of the visually impaired. These platforms provide graphical interfaces that require sight to access. The visually impaired civil servants require auditory access to functionalities that exist in learning management system on the Internet. Thus a gap exist between the able-bodied and visually impaired civil servants on accessibility to e-learning platform. The objective of this paper is to provide a personalized telephone learning model and a prototype application that will enhance the productivity of the visually impaired workers in Government establishments in Nigeria. The model was designed using Unified Modeling Language (UML) diagram. The prototype application was implemented and evaluated. With the proposed model and application, the visually and mobility impaired worker are able to participate in routine staff training and consequently enhances their productivity just like their able-bodied counterparts. The prototype application also serves as an alternative training platform for the able-bodied workers. Future research direction for this study will include biometric authentication of learners accessing the applicatio

    Proximity and anomalous field-effect characteristics in double-wall carbon nanotubes

    Full text link
    Proximity effect on field-effect characteristic (FEC) in double-wall carbon nanotubes (DWCNTs) is investigated. In a semiconductor-metal (S-M) DWCNT, the penetration of electron wavefunctions in the metallic shell to the semiconducting shell turns the original semiconducting tube into a metal with a non-zero local density of states at the Fermi level. By using a two-band tight-binding model on a ladder of two legs, it is demonstrated that anomalous FEC observed in so-called S-M type DWCNTs can be fully understood by the proximity effect of metallic phases.Comment: 4 pages, 4 figure
    • …
    corecore