3 research outputs found
Whole Genome Sequencing Reveals Antimicrobial Resistance and Virulence Genes of Both Pathogenic and Non-Pathogenic <i>B. cereus</i> Group Isolates from Foodstuffs in Thailand
Members of the Bacillus cereus group are spore-forming Gram-positive bacilli that are commonly associated with diarrheal or emetic food poisoning. They are widespread in nature and frequently present in both raw and processed food products. Here, we genetically characterized 24 B. cereus group isolates from foodstuffs. Whole-genome sequencing (WGS) revealed that most of the isolates were closely related to B. cereus sensu stricto (12 isolates), followed by B. pacificus (5 isolates), B. paranthracis (5 isolates), B. tropicus (1 isolate), and “B. bingmayongensis” (1 isolate). The most detected virulence genes were BAS_RS06430, followed by bacillibactin biosynthesis genes (dhbA, dhbB, dhbC, dhbE, and dhbF), genes encoding the three-component non-hemolytic enterotoxin (nheA, nheB, and nheC), a gene encoding an iron-regulated leucine-rich surface protein (ilsA), and a gene encoding a metalloprotease (inhA). Various biofilm-associated genes were found, with high prevalences of tasA and sipW genes (matrix protein-encoding genes); purA, purC, and purL genes (eDNA synthesis genes); lytR and ugd genes (matrix polysaccharide synthesis genes); and abrB, codY, nprR, plcR, sinR, and spo0A genes (biofilm transcription regulator genes). Genes related to fosfomycin and beta-lactam resistance were identified in most of the isolates. We therefore demonstrated that WGS analysis represents a useful tool for rapidly identifying and characterizing B. cereus group strains. Determining the genetic epidemiology, the presence of virulence and antimicrobial resistance genes, and the pathogenic potential of each strain is crucial for improving the risk assessment of foodborne B. cereus group strains
SARS-CoV-2 Seroprevalence in Unvaccinated Adults in Thailand in November 2021
Between the first case of COVID-19 in January 2020 and the end of 2021, Thailand experienced four waves of the epidemic. The third and fourth waves were caused by the alpha and delta strains from April 2021 to November 2021. Serosurveillance studies provide snapshots of the true scale of the outbreak, including the asymptomatic infections that could not be fully captured by a hospital-based case detection system. We aimed to investigate the distribution of SARs-CoV-2 seroprevalence in unvaccinated adults after the delta wave outbreak. From November to December 2021, we conducted a cross-sectional survey study in 12 public health areas (PHAs) across Thailand. A total of 26,717 blood samples were collected and tested for SARs-CoV-2 antibodies (anti-S IgG) using a qualitative immunoassay. The results showed that seropositive prevalence in this cohort was 1.4% (95% CI: 1.24 to 1.52). The lowest prevalence was in the northern region (PHA 1) and in central Thailand (PHA 3) at 0.4% (95% CI: 0.15 to 0.95), while the highest was in the southern region of Thailand (PHA 12) at 5.8% (95% CI: 4.48 to 7.29). This seropositive prevalence was strikingly lower than the reports from other countries. Our serosurveillance results suggest that the vaccination of unvaccinated groups should be accelerated, especially in the public health areas with the lowest seroprevalence