2,178 research outputs found

    Analysis of White Dwarfs with Strange-Matter Cores

    Full text link
    We summarize masses and radii for a number of white dwarfs as deduced from a combination of proper motion studies, Hipparcos parallax distances, effective temperatures, and binary or spectroscopic masses. A puzzling feature of these data is that some stars appear to have radii which are significantly smaller than that expected for a standard electron-degenerate white-dwarf equations of state. We construct a projection of white-dwarf radii for fixed effective mass and conclude that there is at least marginal evidence for bimodality in the radius distribution forwhite dwarfs. We argue that if such compact white dwarfs exist it is unlikely that they contain an iron core. We propose an alternative of strange-quark matter within the white-dwarf core. We also discuss the impact of the so-called color-flavor locked (CFL) state in strange-matter core associated with color superconductivity. We show that the data exhibit several features consistent with the expected mass-radius relation of strange dwarfs. We identify eight nearby white dwarfs which are possible candidates for strange matter cores and suggest observational tests of this hypothesis.Comment: 11 pages, 6 figures, accepted for publication in J. Phys. G: Nucl. Part. Phy

    ^{17}O and ^{51}V NMR for the zigzag spin-1 chain compound CaV2O4

    Get PDF
    51^{51}V NMR studies on CaV2O4 single crystals and 17^{17}O NMR studies on 17^{17}O-enriched powder samples are reported. The temperature dependences of the 17^{17}O NMR line width and nuclear spin-lattice relaxation rate give strong evidence for a long-range antiferromagnetic transition at Tn = 78 K in the powder. Magnetic susceptibility measurements show that Tn = 69 K in the crystals. A zero-field 51^{51}V NMR signal was observed at low temperatures (f \approx 237 MHz at 4.2 K) in the crystals. The field swept spectra with the field in different directions suggest the presence of two antiferromagnetic substructures. Each substructure is collinear, with the easy axes of the two substructures separated by an angle of 19(1) degree, and with their average direction pointing approximately along the b-axis of the crystal structure. The two spin substructures contain equal number of spins. The temperature dependence of the ordered moment, measured up to 45 K, shows the presence of an energy gap Eg in the antiferromagnetic spin wave excitation spectrum. Antiferromagnetic spin wave theory suggests that Eg lies between 64 and 98 K.Comment: 11 pages, 14 figures. v2: 2 new figures; version published in Phys. Rev.

    Nonbonding oxygen holes and spinless scenario of magnetic response in doped cuprates

    Get PDF
    Both theoretical considerations and experimental data point to a more complicated nature of the valence hole states in doped cuprates than it is predicted by Zhang-Rice model. Actually, we deal with a competition of conventional hybrid Cu 3d-O 2p b1gdx2y2b_{1g}\propto d_{x^2 -y^2} state and purely oxygen nonbonding state with eux,ypx,ye_{u}x,y \propto p_{x,y} symmetry. The latter reveals a non-quenched Ising-like orbital moment that gives rise to a novel spinless purely oxygen scenario of the magnetic response in doped cuprates with the oxygen localized orbital magnetic moments of the order of tenths of Bohr magneton. We consider the mechanism of 63,65{}^{63,65}Cu-O 2p transferred orbital hyperfine interactions due to the mixing of the oxygen O 2p orbitals with Cu 3p semicore orbitals. Quantitative estimates point to a large magnitude of the respective contributions both to local field and electric field gradient, and their correlated character.Comment: 7 pages, 1 figur

    The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau

    Get PDF
    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP

    Measurement of ψ(2S)\psi(2S) decays to baryon pairs

    Full text link
    A sample of 3.95M ψ(2S)\psi(2S) decays registered in the BES detector are used to study final states containing pairs of octet and decuplet baryons. We report branching fractions for ψ(2S)ppˉ\psi(2S)\to p\bar{p}, ΛΛˉ\Lambda\bar{\Lambda}, Σ0Σˉ0\Sigma^0\bar{\Sigma}{}^0, ΞΞˉ+\Xi^-\bar{\Xi}{}^+, Δ++Δˉ\Delta^{++}\bar{\Delta}{}^{--}, Σ+(1385)Σˉ(1385)\Sigma^+(1385)\bar{\Sigma}{}^-(1385), Ξ0(1530)Ξˉ0(1530)\Xi^0(1530)\bar{\Xi}{}^0(1530), and ΩΩˉ+\Omega^-\bar{\Omega}{}^+. These results are compared to expectations based on the SU(3)-flavor symmetry, factorization, and perturbative QCD.Comment: 22 pages, 21 figures, 4 table
    corecore