2,178 research outputs found
Analysis of White Dwarfs with Strange-Matter Cores
We summarize masses and radii for a number of white dwarfs as deduced from a
combination of proper motion studies, Hipparcos parallax distances, effective
temperatures, and binary or spectroscopic masses. A puzzling feature of these
data is that some stars appear to have radii which are significantly smaller
than that expected for a standard electron-degenerate white-dwarf equations of
state. We construct a projection of white-dwarf radii for fixed effective mass
and conclude that there is at least marginal evidence for bimodality in the
radius distribution forwhite dwarfs. We argue that if such compact white dwarfs
exist it is unlikely that they contain an iron core. We propose an alternative
of strange-quark matter within the white-dwarf core. We also discuss the impact
of the so-called color-flavor locked (CFL) state in strange-matter core
associated with color superconductivity. We show that the data exhibit several
features consistent with the expected mass-radius relation of strange dwarfs.
We identify eight nearby white dwarfs which are possible candidates for strange
matter cores and suggest observational tests of this hypothesis.Comment: 11 pages, 6 figures, accepted for publication in J. Phys. G: Nucl.
Part. Phy
^{17}O and ^{51}V NMR for the zigzag spin-1 chain compound CaV2O4
V NMR studies on CaV2O4 single crystals and O NMR studies on
O-enriched powder samples are reported. The temperature dependences of
the O NMR line width and nuclear spin-lattice relaxation rate give
strong evidence for a long-range antiferromagnetic transition at Tn = 78 K in
the powder. Magnetic susceptibility measurements show that Tn = 69 K in the
crystals. A zero-field V NMR signal was observed at low temperatures (f
237 MHz at 4.2 K) in the crystals. The field swept spectra with the
field in different directions suggest the presence of two antiferromagnetic
substructures. Each substructure is collinear, with the easy axes of the two
substructures separated by an angle of 19(1) degree, and with their average
direction pointing approximately along the b-axis of the crystal structure. The
two spin substructures contain equal number of spins. The temperature
dependence of the ordered moment, measured up to 45 K, shows the presence of an
energy gap Eg in the antiferromagnetic spin wave excitation spectrum.
Antiferromagnetic spin wave theory suggests that Eg lies between 64 and 98 K.Comment: 11 pages, 14 figures. v2: 2 new figures; version published in Phys.
Rev.
Nonbonding oxygen holes and spinless scenario of magnetic response in doped cuprates
Both theoretical considerations and experimental data point to a more
complicated nature of the valence hole states in doped cuprates than it is
predicted by Zhang-Rice model. Actually, we deal with a competition of
conventional hybrid Cu 3d-O 2p state and purely
oxygen nonbonding state with symmetry. The latter
reveals a non-quenched Ising-like orbital moment that gives rise to a novel
spinless purely oxygen scenario of the magnetic response in doped cuprates with
the oxygen localized orbital magnetic moments of the order of tenths of Bohr
magneton. We consider the mechanism of Cu-O 2p transferred orbital
hyperfine interactions due to the mixing of the oxygen O 2p orbitals with Cu 3p
semicore orbitals. Quantitative estimates point to a large magnitude of the
respective contributions both to local field and electric field gradient, and
their correlated character.Comment: 7 pages, 1 figur
The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau
The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP
Measurement of decays to baryon pairs
A sample of 3.95M decays registered in the BES detector are used
to study final states containing pairs of octet and decuplet baryons. We report
branching fractions for , ,
, ,
, ,
, and . These results
are compared to expectations based on the SU(3)-flavor symmetry, factorization,
and perturbative QCD.Comment: 22 pages, 21 figures, 4 table
- …