435 research outputs found

    Stochastic Gravitational Wave Background originating from Halo Mergers

    Full text link
    The stochastic gravitational wave background (GWB) from halo mergers is investigated by a quasi-analytic method. The method we employ consists of two steps. The first step is to construct a merger tree by using the Extended Press-Schechter formalism or the Sheth & Tormen formalism, with Monte-Carlo realizations. This merger tree provides evolution of halo masses. From NN-body simulation of two-halo mergers, we can estimate the amount of gravitational wave emission induced by the individual merger process. Therefore the second step is to combine this gravitaional wave emission to the merger tree and obtain the amplitude of GWB. We find ΩGW1019\Omega_{GW}\sim 10^{-19} for f10171016f\sim 10^{-17}-10^{-16} Hz, where ΩGW\Omega_{GW} is the energy density of the GWB. It turns out that most of the contribution on the GWB comes from halos with masses below 1015M10^{15} M_\odot and mergers at low redshift, i.e., 0<z<0.80<z<0.8.Comment: 5 pages, 8 figures. Accepted for publication in Physical Review

    Mating in the cold. Prolonged sperm storage provides opportunities for forced copulation by male bats during winter

    Get PDF
    In a wide range of heterothermic mammals, hibernation interrupts the reproductive cycle by forcing reproductive delays. In hibernating bats with delayed fertilization, an opportunity for sperm competition is enhanced by extending a time-window between copulations and fertilization. In order to achieve greater fertilization success, males are expected to show adaptations for sperm competition by increasing their opportunities for mating over an extended period. We aimed to clarify the physiological and behavioral characteristics of male bats experiencing increased risks of sperm competition. We investigated the characteristics of the reproductive cycle of the little horseshoe bat (Rhinolophus cornutus), and examined whether males retain reproductive physiology related to sexual behavior, and attempt to copulate with females even during the hibernation period. Field observations and histological examinations of the reproductive cycle confirmed that females, having mated in the autumn, store spermatozoa in the uterus during hibernation and give birth in the early summer to just one offspring per year, thus males face a low certainty of successful fertilization. Although their testes regressed rapidly and their testosterone levels were lower during winter than in autumn, males stored motile spermatozoa in their cauda epididymides from autumn throughout the winter. During hibernation, we found that males occasionally aroused from torpor and attempted to mate forcibly with torpid females. Forced copulations appear to increase a male’s chances of obtaining a mate while avoiding pre-copulatory female choice. Epididymal sperm storage could be advantageous for males in allowing them to extend their potential mating period even though their testes have regressed. We also found that some hibernating nulliparous females were ready for fertilization in spring after hibernation, whereas few parous females appeared in the same roost. In contrast to males, forced copulations would be maladaptive for females because they cannot opt for higher-quality males while in torpor. Females that have experienced sexual coercion when young may subsequently avoid hibernacula where adult males are present

    Anti-Obesity and Anti-Diabetic Effects of Acacia Polyphenol in Obese Diabetic KKAy Mice Fed High-Fat Diet

    Get PDF
    Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia meansii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. The present study investigated the anti-obesity/anti-diabetic effects of AP using obese diabetic KKAy mice. KKAy mice received either normal diet, high-fat diet or high-fat diet with additional AP for 7 weeks. After the end of administration, body weight, plasma glucose and insulin were measured. Furthermore, mRNA and protein expression of obesity/diabetic suppression-related genes were measured in skeletal muscle, liver and white adipose tissue. As a result, compared to the high-fat diet group, increases in body weight, plasma glucose and insulin were significantly suppressed for AP groups. Furthermore, compared to the high-fat diet group, mRNA expression of energy expenditure-related genes (PPARα, PPARδ, CPT1, ACO and UCP3) was significantly higher for AP groups in skeletal muscle. Protein expressions of CPT1, ACO and UCP3 for AP groups were also significantly higher when compared to the high-fat diet group. Moreover, AP lowered the expression of fat acid synthesis-related genes (SREBP-1c, ACC and FAS) in the liver. AP also increased mRNA expression of adiponectin and decreased expression of TNF-α in white adipose tissue. In conclusion, the anti-obesity actions of AP are considered attributable to increased expression of energy expenditure-related genes in skeletal muscle, and decreased fatty acid synthesis and fat intake in the liver. These results suggest that AP is expected to be a useful plant extract for alleviating metabolic syndrome
    corecore