1,243 research outputs found
T-duality of ZZ-brane
We examine how nonperturbative effects in string theory are transformed under
the T-duality in its nonperturbative framework by analyzing the c=1/2
noncritical string theory as a simplest example. We show that in the T-dual
theory they also take the form of exp(-S_0/g_s) in the leading order and that
the instanton actions S_0 of the dual ZZ-branes are exactly the same as those
in the original c=1/2 string theory. Furthermore we present formulas for
coefficients of exp(-S_0/g_s) in the dual theory.Comment: 37 pages, no figure, LaTeX; (v2) version published in Physical Review
Lattice formulation of super Yang-Mills theory
We construct a lattice action for super Yang-Mills theory in
four dimensions which is local, gauge invariant, free of spectrum doubling and
possesses a single exact supersymmetry. Our construction starts from the
observation that the fermions of the continuum theory can be mapped into the
component fields of a single real anticommuting Kahler-Dirac field. The
original supersymmetry algebra then implies the existence of a nilpotent scalar
supercharge and a corresponding set of bosonic superpartners. Using this
field content we write down a -exact action and show that, with an
appropriate change of variables, it reduces to a well-known twist of super Yang-Mills theory due to Marcus. Using the discretization
prescription developed in an earlier paper on the theory in two
dimensions we are able to translate this geometrical action to the lattice.Comment: 15 pages. 1 reference correcte
Relations among Supersymmetric Lattice Gauge Theories via Orbifolding
We show how to derive Catterall's supersymmetric lattice gauge theories
directly from the general principle of orbifolding followed by a variant of the
usual deconstruction. These theories are forced to be complexified due to a
clash between charge assignments under U(1)-symmetries and lattice assignments
in terms of scalar, vector and tensor components for the fermions. Other
prescriptions for how to discretize the theory follow automatically by
orbifolding and deconstruction. We find that Catterall's complexified model for
the two-dimensional N=(2,2) theory has two independent preserved
supersymmetries. We comment on consistent truncations to lattice theories
without this complexification and with the correct continuum limit. The
construction of lattice theories this way is general, and can be used to derive
new supersymmetric lattice theories through the orbifolding procedure. As an
example, we apply the prescription to topologically twisted four-dimensional
N=2 supersymmetric Yang-Mills theory. We show that a consistent truncation is
closely related to the lattice formulation previously given by Sugino.Comment: 20 pages, LaTeX2e, no figur
The conceptus induces a switch in protein expression and activities of superoxide dismutase 1 and 2 in the sheep endometrium during early pregnancy
Acknowledgements We thank Philippe Bolifraud (INRA, France), Krawiec Angele, Sandra Grange, Laurence Puillet-Anselme (CHU Grenoble, France) and Margaret Fraser (Aberdeen, UK) for their expert technical assistance. The authors also thank the staff of the sheep sheds of Jouy-en-Josas (INRA, France). The authors would also like to thank the anonymous reviewers for their close examination of this article and their useful comments. Funding This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.Peer reviewedPostprin
Compact Gauge Fields for Supersymmetric Lattices
We show that a large class of Euclidean extended supersymmetric lattice gauge
theories constructed in [hep-lat/0302017 - hep-lat/0503039] can be regarded as
compact formulations by using the polar decomposition of the complex link
fields. In particular, the gauge part of the supersymmetric lattice action is
the standard Wilson action. This formulation facilitates the construction of
gauge invariant operators.Comment: 15 pages, 2 figures. Minor change
Two-dimensional N=(2,2) super Yang-Mills theory on computer
We carry out preliminary numerical study of Sugino's lattice formulation
\cite{Sugino:2004qd,Sugino:2004qdf} of the two-dimensional
super Yang-Mills theory (2d SYM) with the gauge group
\SU(2). The effect of dynamical fermions is included by re-weighting a
quenched ensemble by the pfaffian factor. It appears that the complex phase of
the pfaffian due to lattice artifacts and flat directions of the classical
potential are not problematic in Monte Carlo simulation. Various one-point
supersymmetric Ward-Takahashi (WT) identities are examined for lattice spacings
up to with the fixed physical lattice size , where
denotes the gauge coupling constant in two dimensions. WT identities implied by
an exact fermionic symmetry of the formulation are confirmed in fair accuracy
and, for most of these identities, the quantum effect of dynamical fermions is
clearly observed. For WT identities expected only in the continuum limit, the
results seem to be consistent with the behavior expected from supersymmetry,
although we do not see clear distintion from the quenched simulation. We
measure also the expectation values of renormalized gauge-invariant bi-linear
operators of scalar fields.Comment: 24 pages, 10 figures, the distribution of the complex phase of the
pffafian is also measured, the final version to appear in JHE
Crossover of the weighted mean fragment mass scaling in 2D brittle fragmentation
We performed vertical and horizontal sandwich 2D brittle fragmentation
experiments. The weighted mean fragment mass was scaled using the multiplicity
. The scaling exponent crossed over at . In the
small regime, the binomial multiplicative (BM) model was
suitable and the fragment mass distribution obeyed log-normal form. However, in
the large regime, in which a clear power-law cumulative
fragment mass distribution was observed, it was impossible to describe the
scaling exponent using the BM model. We also found that the scaling exponent of
the cumulative fragment mass distribution depended on the manner of impact
(loading conditions): it was 0.5 in the vertical sandwich experiment, and
approximately 1.0 in the horizontal sandwich experiment.Comment: 5 pages, 3 figure
Exact Vacuum Energy of Orbifold Lattice Theories
We investigate the orbifold lattice theories constructed from supersymmetric
Yang-Mills matrix theories (mother theories) with four and eight supercharges.
We show that the vacuum energy of these theories does not receive any quantum
correction perturbatively.Comment: 14 pages, no figure, LaTeX2e, typos corrected, errors in references
corrected, comments adde
Matrix formulation of superspace on 1D lattice with two supercharges
Following the approach developed by some of the authors in recent papers and
using a matrix representation for the superfields, we formulate an exact
supersymmetric theory with two supercharges on a one dimensional lattice. In
the superfield formalism supersymmetry transformations are uniquely defined and
do not suffer of the ambiguities recently pointed out by some authors. The
action can be written in a unique way and it is invariant under all
supercharges. A modified Leibniz rule applies when supercharges act on a
superfield product and the corresponding Ward identities take a modified form
but hold exactly at least at the tree level, while their validity in presence
of radiative corrections is still an open problem and is not considered here.Comment: 25 page
Convergence of the Gaussian Expansion Method in Dimensionally Reduced Yang-Mills Integrals
We advocate a method to improve systematically the self-consistent harmonic
approximation (or the Gaussian approximation), which has been employed
extensively in condensed matter physics and statistical mechanics. We
demonstrate the {\em convergence} of the method in a model obtained from
dimensional reduction of SU() Yang-Mills theory in dimensions. Explicit
calculations have been carried out up to the 7th order in the large-N limit,
and we do observe a clear convergence to Monte Carlo results. For the convergence is already achieved at the 3rd order, which suggests that
the method is particularly useful for studying the IIB matrix model, a
conjectured nonperturbative definition of type IIB superstring theory.Comment: LaTeX, 4 pages, 5 figures; title slightly changed, explanations added
(16 pages, 14 figures), final version published in JHE
- …