18 research outputs found

    Big-bang nucleosynthesis with a long-lived charged massive particle including 4^4He spallation processes

    Full text link
    We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.Comment: 12 pages, 4 figures, 1 table, references added, all figures correcte

    Staphylococcus aureus MazF Specifically Cleaves a Pentad Sequence, UACAU, Which Is Unusually Abundant in the mRNA for Pathogenic Adhesive Factor SraP ▿

    No full text
    Escherichia coli mRNA interferases, such as MazF and ChpBK, are sequence-specific endoribonucleases encoded by toxin-antitoxin (TA) systems present in its genome. A MazF homologue in Staphylococcus aureus (MazFSa) has been shown to inhibit cell growth when induced in E. coli. Here, we determined the cleavage site for MazFSa with the use of phage MS2 RNA as a substrate and CspA, an RNA chaperone, which prevents the formation of secondary structures in the RNA substrate. MazFSa specifically cleaves the RNA at a pentad sequence, U↓ACAU. Bioinformatics analysis revealed that this pentad sequence is significantly abundant in several genes, including the sraP gene in the S. aureus N315 strain. This gene encodes a serine-rich protein, which is known to play an important role in adhesion of the pathogen to human tissues and thus in endovascular infection. We demonstrated that the sraP mRNA became extremely unstable in comparison with the ompA mRNA only when MazFSa was induced in E. coli. Further bioinformatics analysis indicated that the pentad sequence is also significantly abundant in the mRNAs for all the pathogenic factors in S. aureus. This observation suggests a possible regulatory relationship between the MazEFSa TA module and the pathogenicity in S. aureus
    corecore