57 research outputs found

    吉蔵における「一乗」解釈 ―『勝鬘経』受容の観点から―

    Get PDF
     本論文では、吉蔵(549-623)の『勝鬘経』注釈書である『勝鬘宝窟』を主な資料とし、同書で取り上げられる『法華経』と『勝鬘経』の相違に対する会通について、その妥当性を検証し、解釈の特色と独自性を考察する。『宝窟』では、『法華経』、『勝鬘経』の相違について、いくつかの論点が扱われるが、本論文では『法華経』で、声聞は法説・譬説・宿世因縁説の三周説法によって一乗を理解すると説かれるのに対し、『勝鬘経』では阿羅漢・辟支仏が法に愚かではないと説かれる相違に対する吉蔵の会通に論点を絞る。 声聞を愚法・不愚法に分類し、愚法の声聞が、『法華経』等の一乗経を聞くことで不愚法となるという吉蔵の会通は、『勝鬘経』の原文からは距離があることが分かり、その解釈は前時代の『勝鬘経』注釈書とも共通した。また、愚法・不愚法の概念は慧遠(523-592)の影響を受けていることと、そこに「一乗経を聞く」という吉蔵独自の条件を加えたという仮説を提示した

    Local sympathetic neurons promote neutrophil egress from the bone marrow at the onset of acute inflammation

    Full text link
    This is a pre-copyedited, author-produced version of an article accepted for publication in International Immunology following peer review. The version of record Tomoka Ao, Junichi Kikuta, Takao Sudo, Yutaka Uchida, Kenta Kobayashi, Masaru Ishii, Local sympathetic neurons promote neutrophil egress from the bone marrow at the onset of acute inflammation, International Immunology, Volume 32, Issue 11, November 2020, Pages 727–736. is available online at: https://doi.org/10.1093/intimm/dxaa025

    Development of an intravital imaging system for the synovial tissue reveals the dynamics of CTLA-4 Ig in vivo

    Get PDF
    There have been many attempts to visualize the inflamed joints using multiphoton microscopy. However, due to the hypervascular and multilayered structure of the inflamed synovium, intravital imaging of the deep synovial tissue has been difficult. Here, we established original intravital imaging systems to visualize synovial tissue and pathological osteoclasts at the pannus–bone interface using multiphoton microscopy. Combined with fluorescence-labeling of CTLA-4 Ig, a biological agent used for the treatment of rheumatoid arthritis, we identified that CTLA-4 Ig was distributed predominantly within the inflamed synovium and bound to CX3CR1+ macrophages and CD140a+ fibroblasts 6 h after injection, but not to mature osteoclasts. Intravital imaging of blood and lymphatic vessels in the inflamed synovium further showed that extravasated CTLA-4 Ig was immediately drained through lymphatic vessels under acute arthritic conditions, but the drainage activity was retarded under chronic conditions. These results indicate that this intravital synovial imaging system can serve as a platform for exploring the dynamics of immune cells, osteoclasts, and biological agents within the synovial microenvironment in vivo.Hasegawa T., Kikuta J., Sudo T., et al. Development of an intravital imaging system for the synovial tissue reveals the dynamics of CTLA-4 Ig in vivo. Scientific Reports 10, 13480 (2020); https://doi.org/10.1038/s41598-020-70488-y

    Migration arrest of chemoresistant leukemia cells mediated by MRTF-SRF pathway

    Get PDF
    Background: Dormant chemotherapy-resistant leukemia cells can survive for an extended period before relapse. Nevertheless, the mechanisms underlying the development of chemoresistance in vivo remain unclear. Methods: Using intravital bone imaging, we characterized the behavior of murine acute myeloid leukemia (AML) cells (C1498) in the bone marrow before and after chemotherapy with cytarabine. Results: Proliferative C1498 cells exhibited high motility in the bone marrow. Cytarabine treatment impaired the motility of residual C1498 cells. However, C1498 cells regained their migration potential after relapse. RNA sequencing revealed that cytarabine treatment promoted MRTF-SRF pathway activation. MRTF inhibition using CCG-203971 augmented the anti-tumor effects of chemotherapy in our AML mouse model, as well as suppressed the migration of chemoresistant C1498 cells. Conclusions: These results provide novel insight into the role of cell migration arrest on the development of chemoresistance in AML, as well as provide a strong rationale for the modulation of cellular motility as a therapeutic target for refractory AML.Morimatsu M., Yamashita E., Seno S., et al. Migration arrest of chemoresistant leukemia cells mediated by MRTF-SRF pathway. Inflammation and Regeneration 40, 15 (2020); https://doi.org/10.1186/s41232-020-00127-6

    Thrombomodulin induces anti-inflammatory effects by inhibiting the rolling adhesion of leukocytes in vivo

    Get PDF
    Thrombomodulin (TM) is an integral membrane protein expressed on the surface of vascular endothelial cells that suppresses blood coagulation. Recent studies have shown that TM exhibits anti-inflammatory effects by inhibiting leukocyte recruitment. However, the actual modes of action of TM in vivo remain unclear. Here, we describe the pharmacological effects of recombinant human soluble TM (TM alfa) on leukocyte dynamics in living mice using intravital imaging techniques. Under control conditions, neutrophils exhibited three distinct types of adhesion behavior in vessels: 1) “non-adhesion”, in which cells flowed without vessel adhesion; 2) “rolling adhesion”, in which cells transiently interacted with the endothelium; and 3) “tight binding”, in which cells bound strongly to the endothelial cells. Compared to control conditions, local lipopolysaccharide stimulation resulted in an increased frequency of rolling adhesion that was not homogeneously distributed on vessel walls but occurred at specific endothelial sites. Under inflammatory conditions, TM alfa, particularly the D1 domain which is a lectin-like region of TM, significantly decreased the frequency of rolling adhesion, but did not influence the number of tight bindings. This was the first study to demonstrate that TM alfa exerts anti-inflammatory effects by inhibiting rolling adhesion of neutrophils to vascular endothelial cells in living mice.Nishizawa S., Kikuta J., Seno S., et al. Thrombomodulin induces anti-inflammatory effects by inhibiting the rolling adhesion of leukocytes in vivo. Journal of Pharmacological Sciences 143, 17 (2020); https://doi.org/10.1016/j.jphs.2020.01.001

    Label-free multiphoton excitation imaging as a promising diagnostic tool for breast cancer

    Get PDF
    Histopathological diagnosis is the ultimate method of attaining the final diagnosis; however, the observation range is limited to the two-dimensional plane, and it requires thin slicing of the tissue, which limits diagnostic information. To seek solutions for these problems, we proposed a novel imaging-based histopathological examination. We used the multiphoton excitation microscopy (MPM) technique to establish a method for visualizing unfixed/unstained human breast tissues. Under near-infrared ray excitation, fresh human breast tissues emitted fluorescent signals with three major peaks, which enabled visualizing the breast tissue morphology without any fixation or dye staining. Our study using human breast tissue samples from 32 patients indicated that experienced pathologists can estimate normal or cancerous lesions using only these MPM images with a kappa coefficient of 1.0. Moreover, we developed an image classification algorithm with artificial intelligence that enabled us to automatically define cancer cells in small areas with a high sensitivity of ≥0.942. Taken together, label-free MPM imaging is a promising method for the real-time automatic diagnosis of breast cancer.This is the pre-peer reviewed version of the following article:Matsui T., Iwasa A., Mimura M., et al. Label-free multiphoton excitation imaging as a promising diagnostic tool for breast cancer. Cancer Science 113, 2916 (2022), which has been published in final form at https://doi.org/10.1111/cas.15428. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

    Group 2 innate lymphoid cells support hematopoietic recovery under stress conditions

    Get PDF
    The cell-cycle status of hematopoietic stem and progenitor cells (HSPCs) becomes activated following chemotherapy-induced stress, promoting bone marrow (BM) regeneration; however, the underlying molecular mechanism remains elusive. Here we show that BM-resident group 2 innate lymphoid cells (ILC2s) support the recovery of HSPCs from 5-fluorouracil (5-FU)-induced stress by secreting granulocyte-macrophage colony-stimulating factor (GM-CSF). Mechanistically, IL-33 released from chemosensitive B cell progenitors activates MyD88-mediated secretion of GM-CSF in ILC2, suggesting the existence of a B cell-ILC2 axis for maintaining hematopoietic homeostasis. GM-CSF knockout mice treated with 5-FU showed severe loss of myeloid lineage cells, causing lethality, which was rescued by transferring BM ILC2s from wild-type mice. Further, the adoptive transfer of ILC2s to 5-FU-treated mice accelerates hematopoietic recovery, while the reduction of ILC2s results in the opposite effect. Thus, ILC2s may function by "sensing" the damaged BM spaces and subsequently support hematopoietic recovery under stress conditions.Sudo T., Motomura Y., Okuzaki D., et al. Group 2 innate lymphoid cells support hematopoietic recovery under stress conditions. Journal of Experimental Medicine 218, e20200817 (2021); https://doi.org/10.1084/jem.20200817

    Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1

    Full text link
    Osteoclasts have a unique bone-destroying capacity, playing key roles in steady-state bone remodeling and arthritic bone erosion. Whether the osteoclasts in these different tissue settings arise from the same precursor states of monocytoid cells is presently unknown. Here, we show that osteoclasts in pannus originate exclusively from circulating bone marrow-derived cells and not from locally resident macrophages. We identify murine CX3CR1hiLy6CintF4/80+I-A+/I-E+ macrophages (termed here arthritis-associated osteoclastogenic macrophages (AtoMs)) as the osteoclast precursor-containing population in the inflamed synovium, comprising a subset distinct from conventional osteoclast precursors in homeostatic bone remodeling. Tamoxifen-inducible Foxm1 deletion suppressed the capacity of AtoMs to differentiate into osteoclasts in vitro and in vivo. Furthermore, synovial samples from human patients with rheumatoid arthritis contained CX3CR1+HLA-DRhiCD11c+CD80−CD86+ cells that corresponded to mouse AtoMs, and human osteoclastogenesis was inhibited by the FoxM1 inhibitor thiostrepton, constituting a potential target for rheumatoid arthritis treatment.Hasegawa T., Kikuta J., Sudo T., et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nature Immunology 20, 1631 (2019); https://doi.org/10.1038/s41590-019-0526-7

    In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma

    Get PDF
    Alveolar macrophages (AMs) are crucial for maintaining normal lung function. They are abundant in lung cancer tissues, but their pathophysiological significance remains unknown. Here we show, using an orthotopic murine lung cancer model and human carcinoma samples, that AMs support cancer cell proliferation and thus contribute to unfavourable outcome. Inhibin beta A (INHBA) expression is upregulated in AMs under tumor-bearing conditions, leading to the secretion of activin A, a homodimer of INHBA. Accordingly, follistatin, an antagonist of activin A is able to inhibit lung cancer cell proliferation. Single-cell RNA sequence analysis identifies a characteristic subset of AMs specifically induced in the tumor environment that are abundant in INHBA, and distinct from INHBA-expressing AMs in normal lungs. Moreover, postnatal deletion of INHBA/activin A could limit tumor growth in experimental models. Collectively, our findings demonstrate the critical pathological role of activin A-producing AMs in tumorigenesis, and provides means to clearly distinguish them from their healthy counterparts.Taniguchi S., Matsui T., Kimura K., et al. In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma. Nature Communications 14, 143 (2023); https://doi.org/10.1038/s41467-022-35701-8

    SLPI is a critical mediator that controls PTH-induced bone formation

    Get PDF
    Osteoclastic bone resorption and osteoblastic bone formation/replenishment are closely coupled in bone metabolism. Anabolic parathyroid hormone (PTH), which is commonly used for treating osteoporosis, shifts the balance from osteoclastic to osteoblastic, although it is unclear how these cells are coordinately regulated by PTH. Here, we identify a serine protease inhibitor, secretory leukocyte protease inhibitor (SLPI), as a critical mediator that is involved in the PTH-mediated shift to the osteoblastic phase. Slpi is highly upregulated in osteoblasts by PTH, while genetic ablation of Slpi severely impairs PTH-induced bone formation. Slpi induction in osteoblasts enhances its differentiation, and increases osteoblast–osteoclast contact, thereby suppressing osteoclastic function. Intravital bone imaging reveals that the PTH-mediated association between osteoblasts and osteoclasts is disrupted in the absence of SLPI. Collectively, these results demonstrate that SLPI regulates the communication between osteoblasts and osteoclasts to promote PTH-induced bone anabolism.Morimoto A., Kikuta J., Nishikawa K., et al. SLPI is a critical mediator that controls PTH-induced bone formation. Nature Communications 12, 2136 (2021); https://doi.org/10.1038/s41467-021-22402-x
    corecore