33,985 research outputs found
Recommended from our members
Hybrid system of expert system and artificial neural networks for objective evaluation of product sensuous quality
Basic problems and the bottleneck of current approaches for objective assessment of product sensuous quality (PSQ) are discussed. As a solution, a new approach, an expert system (ES) based on artificial neural networks (ANNs) is proposed, in which the ES and ANNs co-operate in a superiority compensation way. T he knowledge base of the system can be effectively built and the evaluation of PSQ can be conducted on-line. As a case study, the new approach has been applied in leather handle test and it proves that the approach is capable of handling non-linear relationships among multiple measured PSQ parameters
The definition of "Insider" in section 3 of the securities markets Act 1988: A review and comparison with other jurisdictions
Statutory definitions of what constitutes an “insider” for the purposes of insider trading laws may
be based on either a “person connection” approach or an “information connection” approach.
The “person connection” approach defines “insider” by reference to the relationship of the
person to the public issuer of securities, while the “information connection” approach considers
anyone who has material price-sensitive information about the issuer to be an insider,
regardless of his or her relationship to the issuer.
In common with Japan, Hong Kong and China, New Zealand’s insider trading law — the
Securities Markets Act 1988 — uses a person connection approach in its definition of “insider”.
Other jurisdictions, however, including both the United Kingdom and Australia, have, to varying
degrees, recently amended their definitions to reflect the information connection approach. The
United States, although the first country to address the issue of insider trading, lacks a statutory
definition of “insider” and instead relies on generally applicable laws against securities fraud. It
has developed a definition with elements of both approaches.
This paper reviews the definitions in use in the United States and in other countries (including
New Zealand) which have been influenced by the American experience. It concludes that the
narrow, relationship-based approach does not capture some conduct that may be damaging to
the integrity of the securities market. A definition based on the information connection approach
(perhaps combined with elements of the person connection approach) may therefore be
preferable to New Zealand’s current definition
The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes
A Surface Energy Balance System (SEBS) is proposed for the estimation of atmospheric turbulent fluxes and evaporative fraction using satellite earth observation data, in combination with meteorological information at proper scales. SEBS consists of: a set of tools for the determination of the land surface physical parameters, such as albedo, emissivity, temperature, vegetation coverage etc., from spectral reflectance and radiance measurements; a model for the determination of the roughness length for heat transfer; and a new formulation for the determination of the evaporative fraction on the basis of energy balance at limiting cases. Four experimental data sets are used to assess the reliabilities of SEBS. Based on these case studies, SEBS has proven to be capable to estimate turbulent heat fluxes and evaporative fraction at various scales with acceptable accuracy. The uncertainties in the estimated heat fluxes are comparable to in-situ measurement uncertainties.</p> <p style='line-height: 20px;'><b>Keywords:</b> Surface energy balance, turbulent heat flux, evaporation, remote sensin
Non-damping oscillations at flaring loops
Context. QPPs are usually detected as spatial displacements of coronal loops
in imaging observations or as periodic shifts of line properties in
spectroscopic observations. They are often applied for remote diagnostics of
magnetic fields and plasma properties on the Sun. Aims. We combine imaging and
spectroscopic measurements of available space missions, and investigate the
properties of non-damping oscillations at flaring loops. Methods. We used the
IRIS to measure the spectrum over a narrow slit. The double-component Gaussian
fitting method was used to extract the line profile of Fe XXI 1354.08 A at "O
I" window. The quasi-periodicity of loop oscillations were identified in the
Fourier and wavelet spectra. Results. A periodicity at about 40 s is detected
in the line properties of Fe XXI, HXR emissions in GOES 1-8 A derivative, and
Fermi 26-50 keV. The Doppler velocity and line width oscillate in phase, while
a phase shift of about Pi/2 is detected between the Doppler velocity and peak
intensity. The amplitudes of Doppler velocity and line width oscillation are
about 2.2 km/s and 1.9 km/s, respectively, while peak intensity oscillate with
amplitude at about 3.6% of the background emission. Meanwhile, a quasi-period
of about 155 s is identified in the Doppler velocity and peak intensity of Fe
XXI, and AIA 131 A intensity. Conclusions. The oscillations at about 40 s are
not damped significantly during the observation, it might be linked to the
global kink modes of flaring loops. The periodicity at about 155 s is most
likely a signature of recurring downflows after chromospheric evaporation along
flaring loops. The magnetic field strengths of the flaring loops are estimated
to be about 120-170 G using the MHD seismology diagnostics, which are
consistent with the magnetic field modeling results using the flux rope
insertion method.Comment: 9 pages, 9 figures, 1 table, accepted by A&
EAGLE 2006 – Multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest
EAGLE2006 - an intensive field campaign - was carried out in the Netherlands from the 8th until the
18th of June 2006. Several airborne sensors - an optical imaging sensor, an imaging microwave
radiometer, and a flux airplane – were used and extensive ground measurements were conducted over
one grassland (Cabauw) site and two forest sites (Loobos & Speulderbos) in the central part of the
Netherlands, in addition to the acquisition of multi-angle and multi-sensor satellite data. The data set is
both unique and urgently needed for the development and validation of models and inversion
algorithms for quantitative surface parameter estimation and process studies. EAGLE2006 was led by
the Department of Water Resources of the International Institute for Geo-Information Science and
Earth Observation and originated from the combination of a number of initiatives coming under
different funding. The objectives of the EAGLE2006 campaign were closely related to the objectives of
other ESA Campaigns (SPARC2004, Sen2Flex2005 and especially AGRISAR2006). However, one
important objective of the campaign is to build up a data base for the investigation and validation of the
retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band)
and at hyperspectral optical and thermal bands acquired over vegetated fields (forest and grassland). As
such, all activities were related to algorithm development for future satellite missions such as Sentinels
and for satellite validations for MERIS, MODIS as well as AATSR and ASTER thermal data
validation, with activities also related to the ASAR sensor on board ESA’s Envisat platform and those
on EPS/MetOp and SMOS. Most of the activities in the campaign are highly relevant for the EU
GEMS EAGLE project, but also issues related to retrieval of biophysical parameters from MERIS and
MODIS as well as AATSR and ASTER data were of particular relevance to the NWO-SRON EcoRTM
project, while scaling issues and complementary between these (covering only local sites) and global
sensors such as MERIS/SEVIRI, EPS/MetOP and SMOS were also key elements for the SMOS cal/val
project and the ESA-MOST DRAGON programme. This contribution describes the mission objectives
and provides an overview of the airborne and field campaigns
The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes
A Surface Energy Balance System (SEBS) is proposed for the estimation of atmospheric turbulent fluxes and evaporative fraction using satellite earth observation data, in combination with meteorological information at proper scales. SEBS consists of: a set of tools for the determination of the land surface physical parameters, such as albedo, emissivity, temperature, vegetation coverage etc., from spectral reflectance and radiance measurements; a model for the determination of the roughness length for heat transfer; and a new formulation for the determination of the evaporative fraction on the basis of energy balance at limiting cases. Four experimental data sets are used to assess the reliabilities of SEBS. Based on these case studies, SEBS has proven to be capable to estimate turbulent heat fluxes and evaporative fraction at various scales with acceptable accuracy. The uncertainties in the estimated heat fluxes are comparable to in-situ measurement uncertainties
Transport Properties in the "Strange Metal Phase" of High Tc Cuprates: Spin-Charge Gauge Theory Versus Experiments
The SU(2)xU(1) Chern-Simons spin-charge gauge approach developed earlier to
describe the transport properties of the cuprate superconductors in the
``pseudogap'' regime, in particular, the metal-insulator crossover of the
in-plane resistivity, is generalized to the ``strange metal'' phase at higher
temperature/doping. The short-range antiferromagnetic order and the gauge field
fluctuations, which were the key ingredients in the theory for the pseudogap
phase, also play an important role in the present case. The main difference
between these two phases is caused by the existence of an underlying
statistical -flux lattice for charge carriers in the former case, whereas
the background flux is absent in the latter case. The Fermi surface then
changes from small ``arcs'' in the pseudogap to a rather large closed line in
the strange metal phase. As a consequence the celebrated linear in T dependence
of the in-plane and out-of-plane resistivity is shown explicitly to recover.
The doping concentration and temperature dependence of theoretically calculated
in-plane and out-of-plane resistivity, spin-relaxation rate and AC conductivity
are compared with experimental data, showing good agreement.Comment: 14 pages, 5 .eps figures, submitted to Phys. Rev. B, revised version
submitted on 24 Oc
- …