34 research outputs found

    Lipschitz Unimodal and Isotonic Regression on Paths and Trees

    No full text
    We describe algorithms for finding the regression of t, a sequence of values, to the closest sequence s by mean squared error, so that s is always increasing (isotonicity) and so the values of two consecutive points do not increase by too much (Lipschitz). The isotonicity constraint can be replaced with a unimodular constraint, where there is exactly one local maximum in s. These algorithm are generalized from sequences of values to trees of values. For each scenario we describe near-linear time algorithms.
    corecore