1,138 research outputs found
Surface Brightness and Stellar Populations at the Outer Edge of the Large Magellanic Cloud: No Stellar Halo Yet
We present a high quality CMD for a 36'x 36' field located 8 degrees (7 kpc)
from the LMC center, as well as a precise determination of the LMC surface
brightness derived from the resolved stellar population out to this large
galactocentric radius. This deep CMD shows for the first time the detailed age
distribution at this position, where the surface brightness is V=26.5 mag/sq".
At a radius R=474' the main sequence is well populated from the oldest turnoff
at I=21.5 to the 2.5 Gyr turnoff at I=19.5. Beyond this radius, a relatively
strong gradient in the density of stars with ages in the 2.5-4 Gyr range is
apparent. There are some stars brighter and bluer than the main population,
quite uniformly distributed over the whole area surveyed, which are well
matched by a 1.5 Gyr isochrone and may be indicative of a relatively recent
star formation, or merger, event. The surface brightness profile of the LMC
remains exponential to this large galactocentric radius and shows no evidence
of disk truncation. Combining the information on surface brightness and stellar
population we conclude that the LMC disk extends (and dominates over a possible
stellar halo) out to a distance of at least 7 kpc. These results confirm that
the absence of blue stars in the relatively shallow off-center CMDs of dIrr
galaxies is not necessarily evidence for an exclusively old stellar population
resembling the halo of the Milky Way.Comment: ApJLett, in press 13 pages including 3 color figure
The origin of the LMC stellar bar: clues from the SFH of the bar and inner disk
We discuss the origin of the LMC stellar bar by comparing the star formation
histories (SFH) obtained from deep color-magnitude diagrams (CMDs) in the bar
and in a number of fields in different directions within the inner disk. The
CMDs, reaching the oldest main sequence turnoffs in these very crowded fields,
have been obtained with VIMOS on the VLT in service mode, under very good
seeing conditions. We show that the SFHs of all fields share the same patterns,
with consistent variations of the star formation rate as a function of time in
all of them. We therefore conclude that no specific event of star formation can
be identified with the formation of the LMC bar, which instead likely formed
from a redistribution of disk material that occurred when the LMC disk became
bar unstable, and shared a common SFH with the inner disk thereafter. The
strong similarity between the SFH of the center and edge of the bar rules out
significant spatial variations of the SFH across the bar, which are predicted
by scenarios of classic bar formation through buckling mechanisms.Comment: MNRAS Letters, accepte
A chemical trompe-l'\oe{}il: no iron spread in the globular cluster M22
We present the analysis of high-resolution spectra obtained with UVES and
UVES-FLAMES at the Very Large Telescope of 17 giants in the globular cluster
M22, a stellar system suspected to have an intrinsic spread in the iron
abundance. We find that when surface gravities are derived spectroscopically
(by imposing to obtain the same iron abundance from FeI and FeII lines) the
[Fe/H] distribution spans ~0.5 dex, according to previous analyses. However,
the gravities obtained in this way correspond to unrealistic low stellar masses
(0.1-0.5 Msun) for most of the surveyed giants. Instead, when photometric
gravities are adopted, the [FeII/H] distribution shows no evidence of spread at
variance with the [FeI/H] distribution. This difference has been recently
observed in other clusters and could be due to non-local thermodynamical
equilibrium effects driven by over-ionization mechanisms, that mainly affect
the neutral species (thus providing lower [FeI/H]) but leave [FeII/H]
unaltered. We confirm that the s-process elements show significant star-to-star
variations and their abundances appear to be correlated with the difference
between [FeI/H] and [FeII/H]. This puzzling finding suggests that the peculiar
chemical composition of some cluster stars may be related to effects able to
spuriously decrease [FeI/H]. We conclude that M22 is a globular cluster with no
evidence of intrinsic iron spread, ruling out that it has retained the
supernovae ejecta in its gravitational potential well.Comment: Accepted for publication to ApJ; 33 pages, 10 figures, 6 table
SBF Distances to Dwarf Elliptical Galaxies in the Sculptor Group
As part of an ongoing search for dwarf elliptical galaxies (dE) in the
vicinity of the Local Group, we acquired deep B and R-band images for five dE
candidates identified in the Sculptor (Scl) group region. We carried out a
surface brightness fluctuation (SBF) analysis on the R-band images to measure
the apparent fluctuation magnitude \bar{m}_R for each dE. Using predictions
from stellar population synthesis models the galaxy distances were determined.
All of these dE candidates turned out to be satellites of Scl group major
members. A redshift measurement of the dE candidate ESO294-010 yielded an
independent confirmation of its group membership: the [OIII] and H
emission lines from a small HII region gave a heliocentric velocity of 117(\pm
5) km s-1, in close agreement with the velocity of its parent galaxy NGC 55
(v_\odot=125 km s-1). The precision of the SBF distances (5 to 10%) contributes
to delineating the cigar-like distribution of the Scl group members, which
extend over distances from 1.7 to 4.4 Mpc and are concentrated in three,
possibly four subclumps. The Hubble diagram for nine Scl galaxies, including
two of our dEs, exhibits a tight linear velocity--distance relation with a
steep slope of 119 km s-1 Mpc-1. The results indicate that gravitational
interaction among the Scl group members plays only a minor role in the dynamics
of the group. However, the Hubble flow of the entire system appears strongly
disturbed by the large masses of our Galaxy and M31 leading to the observed
shearing motion. From the distances and velocities of 49 galaxies located in
the Local Group and towards the Scl group, we illustrate the continuity of the
galaxy distribution which strongly supports the view that the two groups form a
single supergalactic structure.Comment: To appear in The Astronomical Journal, December 1998; 28 pages with
22 figure
HST Photometry for the Halo Stars in the Leo Elliptical NGC 3377
We have used the ACS camera on HST to obtain (V,I) photometry for 57,000
red-giant stars in the halo of the Leo elliptical NGC 3377. We use this sample
of stars to derive the metallicity distribution function (MDF) for its halo
field stars, and comment on its chemical evolution history compared with both
larger and smaller E galaxies. Our ACS/WFC field spans a radial range extending
from 4 to 18 kpc projected distance from the center of NGC 3377 and thus covers
a significant portion of this galaxy's halo. We find that the MDF is broad,
reaching a peak at [m/H] ~ -0.6. It may, in addition, have relatively few
stars more metal-rich than [m/H] = -0.3$, although interpretation of the
high-metallicity end of the MDF is limited by photometric completeness that
affects the detection of the reddest, most metal-rich stars. NGC 3377 appears
to have an enrichment history intermediate between those of normal dwarf
ellipticals and the much larger giants. As yet, we find no clear evidence that
the halo of NGC 3377 contains a significant population of ``young'' (< 3 Gy)
stars.Comment: 40 pages, 17 figure
Spatially resolved LMC star formation history: I. Outside in evolution of the outer LMC disk
We study the evolution of three fields in the outer LMC disk Rgc=3.5-6.2 Kpc.
Their star formation history indicates a stellar populations gradient such that
younger stellar populations are more centrally concentrated. We identify two
main star forming epochs, separated by a period of lower activity between ~7
and ~4 Gyr ago. Their relative importance varies from a similar amount of stars
formed in the two epochs in the innermost field, to only 40% of the stars
formed in the more recent epoch in the outermost field. The young star forming
epoch continues to the present time in the innermost field, but lasted only
till ~0.8 and 1.3 Gyr ago at Rgc=5.5 degrees and 7.1 degrees, respectively.
This gradient is correlated with the measured HI column density and implies an
outside-in quenching of the star formation, possibly related to a variation of
the size of the HI disk. This could either result from gas depletion due to
star formation or ram-pressure stripping, or from to the compression of the gas
disk as ram-pressure from the Milky Way halo acted on the LMC interstellar
medium. The latter two situations may have occurred when the LMC first
approached the Milky Way.Comment: 15 pages, 13 figures, 4 tables. MNRAS, in pres
The HST Key Project on the Extragalactic Distance Scale. XXII. The Discovery of Cepheids in NGC 1326-A
We report on the detection of Cepheids and the first distance measurement to
the spiral galaxy NGC 1326-A, a member of the Fornax cluster of galaxies. We
have employed data obtained with the Wide Field and Planetary Camera 2 on board
the Hubble Space Telescope. Over a 49 day interval, a total of twelve V-band
(F555W) and eight I-band (F814W) epochs of observation were obtained. Two
photometric reduction packages, ALLFRAME and DoPHOT, have been employed to
obtain photometry measures from the three Wide Field CCDs. Variability analysis
yields a total of 17 Cepheids in common with both photometry datasets, with
periods ranging between 10 and 50 days. Of these 14 Cepheids with high-quality
lightcurves are used to fit the V and I period-luminosity relations and derive
apparent distance moduli, assuming a Large Magellanic Cloud distance modulus
(m-M) (LMC) = 18.50 +- 0.10 mag and color excess E(B-V) = 0.10 mag. Assuming
A(V)/E(V-I) = 2.45, the DoPHOT data yield a true distance modulus to NGC 1326-A
of (m-M)_0 = 31.36 +- 0.17 (random) +- 0.13 (systematic) mag, corresponding to
a distance of 18.7 \pm 1.5 (random) \pm 1.2 (systematic) Mpc. The derived
distance to NGC 1326-A is in good agreement with the distance derived
previously to NGC 1365, another spiral galaxy member of the Fornax cluster.
However the distances to both galaxies are significantly lower than to NGC
1425, a third Cepheid calibrator in the outer parts of the cluster.Comment: 33 pages A gzipped tar file containing 12 figures can be obtained
from http://www.ipac.caltech.edu/H0kp/n1326a/n1326a.htm
- …