688 research outputs found
Optimal correction of concatenated fault-tolerant quantum codes
We present a method of concatenated quantum error correction in which
improved classical processing is used with existing quantum codes and
fault-tolerant circuits to more reliably correct errors. Rather than correcting
each level of a concatenated code independently, our method uses information
about the likelihood of errors having occurred at lower levels to maximize the
probability of correctly interpreting error syndromes. Results of simulations
of our method applied to the [[4,1,2]] subsystem code indicate that it can
correct a number of discrete errors up to half of the distance of the
concatenated code, which is optimal.Comment: 7 pages, 2 figures, published versio
White matter development from birth to 6 years of age: A longitudinal study
Human white matter development in the first years of life is rapid, setting the foundation for later development. Microstructural properties of white matter are linked to many behavioral and psychiatric outcomes; however, little is known about when in development individual differences in white matter microstructure are established. The aim of the current study is to characterize longitudinal development of white matter microstructure from birth through 6 years to determine when in development individual differences are established. Two hundred and twenty-four children underwent diffusion-weighted imaging after birth and at 1, 2, 4, and 6 years. Diffusion tensor imaging data were computed for 20 white matter tracts (9 left-right corresponding tracts and 2 commissural tracts), with tract-based measures of fractional anisotropy and axial and radial diffusivity. Microstructural maturation between birth and 1 year are much greater than subsequent changes. Further, by 1 year, individual differences in tract average values are consistently predictive of the respective 6-year values, explaining, on average, 40% of the variance in 6-year microstructure. Results provide further evidence of the importance of the first year of life with regard to white matter development, with potential implications for informing early intervention efforts that target specific sensitive periods
Collective T=0 pairing in N=Z nuclei? Pairing vibrations around 56Ni revisited
We present a new analysis of the pairing vibrations around 56Ni, with
emphasis on odd-odd nuclei. This analysis of the experimental excitation
energies is based on the subtraction of average properties that include the
full symmetry energy together with volume, surface and Coulomb terms. The
results clearly indicate a collective behavior of the isovector pairing
vibrations and do not support any appreciable collectivity in the isoscalar
channel.Comment: RevTeX, two-column, 5 pages, 4 figure
Interaction of quasilocal harmonic modes and boson peak in glasses
The direct proportionality relation between the boson peak maximum in
glasses, , and the Ioffe-Regel crossover frequency for phonons,
, is established. For several investigated materials . At the frequency the mean free path of the
phonons becomes equal to their wavelength because of strong resonant
scattering on quasilocal harmonic oscillators. Above this frequency phonons
cease to exist. We prove that the established correlation between
and holds in the general case and is a direct consequence of
bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur
Dimensional Reduction, Hard Thermal Loops and the Renormalization Group
We study the realization of dimensional reduction and the validity of the
hard thermal loop expansion for lambda phi^4 theory at finite temperature,
using an environmentally friendly finite-temperature renormalization group with
a fiducial temperature as flow parameter. The one-loop renormalization group
allows for a consistent description of the system at low and high temperatures,
and in particular of the phase transition. The main results are that
dimensional reduction applies, apart from a range of temperatures around the
phase transition, at high temperatures (compared to the zero temperature mass)
only for sufficiently small coupling constants, while the HTL expansion is
valid below (and rather far from) the phase transition, and, again, at high
temperatures only in the case of sufficiently small coupling constants. We
emphasize that close to the critical temperature, physics is completely
dominated by thermal fluctuations that are not resummed in the hard thermal
loop approach and where universal quantities are independent of the parameters
of the fundamental four-dimensional theory.Comment: 20 pages, 13 eps figures, uses epsfig and pstrick
The Chiral Phase Transition in Dissipative Dynamics
Numerical simulations of the chiral phase transition in the (3+1)dimensional
O(4)-model are presented. The evolutions of the chiral field follow purely
dissipative dynamics, starting from random chirally symmetric initial
configurations down to the true vacuum with spontaneously broken symmetry. The
model stabilizes topological textures which are formed together with domains of
disoriented chiral condensate (DCC) during the roll-down phase. The classically
evolving field acts as source for the emission of pions and mesons.
The exponents of power laws for the growth of angular correlations and for
emission rates are extracted. Fluctuations in the abundance ratios for neutral
and charged pions are compared with those for uncorrelated sources as potential
signature for the chiral phase transition after heavy-ion collisions. It is
found that the presence of stabilizing textures (baryons and antibaryons)
prevents sufficiently rapid growth of DCC-domain size, so observability of
anomalous tails in the abundance ratios is unlikely. However, the transient
formation of growing DCC domains causes sizable broadening of the distributions
as compared to the statistical widths of generic sources.Comment: 28 pages, 8 figure
Non-linear regression models for Approximate Bayesian Computation
Approximate Bayesian inference on the basis of summary statistics is
well-suited to complex problems for which the likelihood is either
mathematically or computationally intractable. However the methods that use
rejection suffer from the curse of dimensionality when the number of summary
statistics is increased. Here we propose a machine-learning approach to the
estimation of the posterior density by introducing two innovations. The new
method fits a nonlinear conditional heteroscedastic regression of the parameter
on the summary statistics, and then adaptively improves estimation using
importance sampling. The new algorithm is compared to the state-of-the-art
approximate Bayesian methods, and achieves considerable reduction of the
computational burden in two examples of inference in statistical genetics and
in a queueing model.Comment: 4 figures; version 3 minor changes; to appear in Statistics and
Computin
DCC Dynamics in (2+1)D-O(3) model
The dynamics of symmetry-breaking after a quench is numerically simulated on
a lattice for the (2+1)-dimensional O(3) model. In addition to the standard
sigma-model with temperature-dependent Phi^4-potential the energy functional
includes a four-derivative current-current coupling to stabilize the size of
the emerging extended topological textures. The total winding number can be
conserved by constraint. As a model for the chiral phase transition during the
cooling phase after a hadronic collision this allows to investigate the
interference of 'baryon-antibaryon' production with the developing disoriented
aligned domains. The growth of angular correlations, condensate, average
orientation is studied in dependence of texture size, quench rate, symmetry
breaking. The classical dissipative dynamics determines the rate of energy
emitted from the relaxing source for each component of the 3-vector field which
provides a possible signature for domains of Disoriented Chiral Condensate. We
find that the 'pions' are emitted in two distinct pulses; for sufficiently
small lattice size the second one carries the DCC signal, but it is strongly
suppressed as compared to simultaneous 'sigma'-meson emission. We compare the
resulting anomalies in the distributions of DCC pions with probabilities
derived within the commonly used coherent state formalism.Comment: 27 pages, 17 figures; several minor insertions in the text; two
references adde
Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude
We report here the measurements of the energy spectra of atmospheric muons
and of the cosmic ray primary proton and helium nuclei in a single experiment.
These were carried out using the MASS superconducting spectrometer in a balloon
flight experiment in 1991. The relevance of these results to the atmospheric
neutrino anomaly is emphasized. In particular, this approach allows
uncertainties caused by the level of solar modulation, the geomagnetic cut-off
of the primaries and possible experimental systematics to be decoupled in the
comparison of calculated fluxes of muons to measured muon fluxes. The muon
observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886
g/cmsquared, respectively. The proton and helium primary measurements cover the
rigidity range from 3 to 100 GV, in which both the solar modulation and the
geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to
appear in Phys. Rev.
- …