10,219 research outputs found

    Correlation energy of an electron gas in strong magnetic fields at high densities

    Full text link
    The high-density electron gas in a strong magnetic field B and at zero temperature is investigated. The quantum strong-field limit is considered in which only the lowest Landau level is occupied. It is shown that the perturbation series of the ground-state energy can be represented in analogy to the Gell-Mann Brueckner expression of the ground-state energy of the field-free electron gas. The role of the expansion parameter is taken by r_B= (2/3 \pi^2) (B/m^2) (\hbar r_s /e)^3 instead of the field-free Gell-Mann Brueckner parameter r_s. The perturbation series is given exactly up to o(r_B) for the case of a small filling factor for the lowest Landau level.Comment: 10 pages, Accepted for publication in Phys.Rev.

    Stochastic modeling of cargo transport by teams of molecular motors

    Full text link
    Many different types of cellular cargos are transported bidirectionally along microtubules by teams of molecular motors. The motion of this cargo-motors system has been experimentally characterized in vivo as processive with rather persistent directionality. Different theoretical approaches have been suggested in order to explore the origin of this kind of motion. An effective theoretical approach, introduced by M\"uller et al., describes the cargo dynamics as a tug-of-war between different kinds of motors. An alternative approach has been suggested recently by Kunwar et al., who considered the coupling between motor and cargo in more detail. Based on this framework we introduce a model considering single motor positions which we propagate in continuous time. Furthermore, we analyze the possible influence of the discrete time update schemes used in previous publications on the system's dynamic.Comment: Cenference proceedings - Traffic and Granular Flow 1

    Can a falling tree make a noise in two forests at the same time?

    Get PDF
    It is a commonplace to claim that quantum mechanics supports the old idea that a tree falling in a forest makes no sound unless there is a listener present. In fact, this conclusion is far from obvious. Furthermore, if a tunnelling particle is observed in the barrier region, it collapses to a state in which it is no longer tunnelling. Does this imply that while tunnelling, the particle can not have any physical effects? I argue that this is not the case, and moreover, speculate that it may be possible for a particle to have effects on two spacelike separate apparatuses simultaneously. I discuss the measurable consequences of such a feat, and speculate about possible statistical tests which could distinguish this view of quantum mechanics from a ``corpuscular'' one. Brief remarks are made about an experiment underway at Toronto to investigate these issues.Comment: 9 pp, Latex, 3 figs, to appear in Proc. Obsc. Unr. Conf.; Fig 2 postscript repaired on 26.10.9

    Parametric Generation of Second Sound by First Sound in Superfluid Helium

    Full text link
    We report the first experimental observation of parametric generation of second sound (SS) by first sound (FS) in superfluid helium in a narrow temperature range in the vicinity of TλT_\lambda . The temperature dependence of the threshold FS amplitude is found to be in a good quantitative agreement with the theory suggested long time ago and corrected for a finite geometry. Strong amplitude fluctuations and two types of the SS spectra are observed above the bifurcation. The latter effect is quantitatively explained by the discreteness of the wave vector space and the strong temperature dependence of the SS dissipation length.Comment: 4 pages, 4 postscript figures, REVTE

    The orbit structure of Dynkin curves

    Full text link
    Let G be a simple algebraic group over an algebraically closed field k; assume that Char k is zero or good for G. Let \cB be the variety of Borel subgroups of G and let e in Lie G be nilpotent. There is a natural action of the centralizer C_G(e) of e in G on the Springer fibre \cB_e = {B' in \cB | e in Lie B'} associated to e. In this paper we consider the case, where e lies in the subregular nilpotent orbit; in this case \cB_e is a Dynkin curve. We give a complete description of the C_G(e)-orbits in \cB_e. In particular, we classify the irreducible components of \cB_e on which C_G(e) acts with finitely many orbits. In an application we obtain a classification of all subregular orbital varieties admitting a finite number of B-orbits for B a fixed Borel subgroup of G.Comment: 12 pages, to appear in Math

    Violation of Heisenberg's Measurement-Disturbance Relationship by Weak Measurements

    Full text link
    While there is a rigorously proven relationship about uncertainties intrinsic to any quantum system, often referred to as "Heisenberg's Uncertainty Principle," Heisenberg originally formulated his ideas in terms of a relationship between the precision of a measurement and the disturbance it must create. Although this latter relationship is not rigorously proven, it is commonly believed (and taught) as an aspect of the broader uncertainty principle. Here, we experimentally observe a violation of Heisenberg's "measurement-disturbance relationship", using weak measurements to characterize a quantum system before and after it interacts with a measurement apparatus. Our experiment implements a 2010 proposal of Lund and Wiseman to confirm a revised measurement-disturbance relationship derived by Ozawa in 2003. Its results have broad implications for the foundations of quantum mechanics and for practical issues in quantum mechanics.Comment: 5 pages, 4 figure

    Optical analog of Rabi oscillation suppression due to atomic motion

    Full text link
    The Rabi oscillations of a two-level atom illuminated by a laser on resonance with the atomic transition may be suppressed by the atomic motion through averaging or filtering mechanisms. The optical analogs of these velocity effects are described. The two atomic levels correspond in the optical analogy to orthogonal polarizations of light and the Rabi oscillations to polarization oscillations in a medium which is optically active, naturally or due to a magnetic field. In the later case, the two orthogonal polarizations could be selected by choosing the orientation of the magnetic field, and one of them be filtered out. It is argued that the time-dependent optical polarization oscillations or their suppression are observable with current technology.Comment: 10 pages, 10 figure

    Affine algebraic groups with periodic components

    Full text link
    A connected component of an affine algebraic group is called periodic if all its elements have finite order. We give a characterization of periodic components in terms of automorphisms with finite number of fixed points. It is also discussed which connected groups have finite extensions with periodic components. The results are applied to the study of the normalizer of a maximal torus in a simple algebraic group.Comment: 20 page

    Anticholinergic Toxicity Secondary to Overuse of Topricin Cream, a Homeopathic Medication.

    Get PDF
    Adverse reactions from over-the-counter medications present a challenge to physicians. Homeopathic medicine is an alternative practice, originating in Germany and gaining popularity in the United States. It utilizes dilute preparations of substances in order to treat and cure disease. Patients may potentially suffer serious effects from the use of these products as the contents and concentrations are often unclear. Here, we describe a case of suspected atropine toxicity due to the overuse of a topical homeopathic cream, Topricin, which contains belladonna, a plant containing atropine

    A Research-Based Curriculum for Teaching the Photoelectric Effect

    Get PDF
    Physics faculty consider the photoelectric effect important, but many erroneously believe it is easy for students to understand. We have developed curriculum on this topic including an interactive computer simulation, interactive lectures with peer instruction, and conceptual and mathematical homework problems. Our curriculum addresses established student difficulties and is designed to achieve two learning goals, for students to be able to (1) correctly predict the results of photoelectric effect experiments, and (2) describe how these results lead to the photon model of light. We designed two exam questions to test these learning goals. Our instruction leads to better student mastery of the first goal than either traditional instruction or previous reformed instruction, with approximately 85% of students correctly predicting the results of changes to the experimental conditions. On the question designed to test the second goal, most students are able to correctly state both the observations made in the photoelectric effect experiment and the inferences that can be made from these observations, but are less successful in drawing a clear logical connection between the observations and inferences. This is likely a symptom of a more general lack of the reasoning skills to logically draw inferences from observations.Comment: submitted to American Journal of Physic
    • …
    corecore