8,257 research outputs found
Experimental Monte Carlo Quantum Process Certification
Experimental implementations of quantum information processing have now
reached a level of sophistication where quantum process tomography is
impractical. The number of experimental settings as well as the computational
cost of the data post-processing now translates to days of effort to
characterize even experiments with as few as 8 qubits. Recently a more
practical approach to determine the fidelity of an experimental quantum process
has been proposed, where the experimental data is compared directly to an ideal
process using Monte Carlo sampling. Here we present an experimental
implementation of this scheme in a circuit quantum electrodynamics setup to
determine the fidelity of two qubit gates, such as the cphase and the cnot
gate, and three qubit gates, such as the Toffoli gate and two sequential cphase
gates
Cavity QED with separate photon storage and qubit readout modes
We present the realization of a cavity quantum electrodynamics setup in which
photons of strongly different lifetimes are engineered in different harmonic
modes of the same cavity. We achieve this in a superconducting transmission
line resonator with superconducting qubits coupled to the different modes. One
cavity mode is strongly coupled to a detection line for qubit state readout,
while a second long lifetime mode is used for photon storage and coherent
quantum operations. We demonstrate sideband based measurement of photon
coherence, generation of n photon Fock states and the scaling of the sideband
Rabi frequency with the square root of n using a scheme that may be extended to
realize sideband based two-qubit logic gates.Comment: 4 pages, 5 figures, version with high resolution figures available at
http://qudev.ethz.ch/content/science/PubsPapers.htm
Classical GR as a topological theory with linear constraints
We investigate a formulation of continuum 4d gravity in terms of a
constrained topological (BF) theory, in the spirit of the Plebanski
formulation, but involving only linear constraints, of the type used recently
in the spin foam approach to quantum gravity. We identify both the continuum
version of the linear simplicity constraints used in the quantum discrete
context and a linear version of the quadratic volume constraints that are
necessary to complete the reduction from the topological theory to gravity. We
illustrate and discuss also the discrete counterpart of the same continuum
linear constraints. Moreover, we show under which additional conditions the
discrete volume constraints follow from the simplicity constraints, thus
playing the role of secondary constraints. Our analysis clarifies how the
discrete constructions of spin foam models are related to a continuum theory
with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010
(ERE2010, Granada, Spain
ALMA data suggest the presence of a spiral structure in the inner wind of CW Leo
(abbreviated) We aim to study the inner wind of the well-known AGB star CW
Leo. Different diagnostics probing different geometrical scales have pointed
toward a non-homogeneous mass-loss process: dust clumps are observed at
milli-arcsec scale, a bipolar structure is seen at arcsecond-scale and
multi-concentric shells are detected beyond 1". We present the first ALMA Cycle
0 band 9 data around 650 GHz. The full-resolution data have a spatial
resolution of 0".42x0".24, allowing us to study the morpho-kinematical
structure within ~6". Results: We have detected 25 molecular lines. The
emission of all but one line is spatially resolved. The dust and molecular
lines are centered around the continuum peak position. The dust emission has an
asymmetric distribution with a central peak flux density of ~2 Jy. The
molecular emission lines trace different regions in the wind acceleration
region and suggest that the wind velocity increases rapidly from about 5 R*
almost reaching the terminal velocity at ~11 R*. The channel maps for the
brighter lines show a complex structure; specifically for the 13CO J=6-5 line
different arcs are detected within the first few arcseconds. The curved
structure present in the PV map of the 13CO J=6-5 line can be explained by a
spiral structure in the inner wind, probably induced by a binary companion.
From modeling the ALMA data, we deduce that the potential orbital axis for the
binary system lies at a position angle of ~10-20 deg to the North-East and that
the spiral structure is seen almost edge-on. We infer an orbital period of 55
yr and a binary separation of 25 au (or ~8.2 R*). We tentatively estimate that
the companion is an unevolved low-mass main-sequence star. The ALMA data hence
provide us for the first time with the crucial kinematical link between the
dust clumps seen at milli-arcsecond scale and the almost concentric arcs seen
at arcsecond scale.Comment: 22 pages, 18 Figures, Astronomy & Astrophysic
Classical GR as a topological theory with linear constraints
We investigate a formulation of continuum 4d gravity in terms of a
constrained topological (BF) theory, in the spirit of the Plebanski
formulation, but involving only linear constraints, of the type used recently
in the spin foam approach to quantum gravity. We identify both the continuum
version of the linear simplicity constraints used in the quantum discrete
context and a linear version of the quadratic volume constraints that are
necessary to complete the reduction from the topological theory to gravity. We
illustrate and discuss also the discrete counterpart of the same continuum
linear constraints. Moreover, we show under which additional conditions the
discrete volume constraints follow from the simplicity constraints, thus
playing the role of secondary constraints. Our analysis clarifies how the
discrete constructions of spin foam models are related to a continuum theory
with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010
(ERE2010, Granada, Spain
Classical GR as a topological theory with linear constraints
We investigate a formulation of continuum 4d gravity in terms of a
constrained topological (BF) theory, in the spirit of the Plebanski
formulation, but involving only linear constraints, of the type used recently
in the spin foam approach to quantum gravity. We identify both the continuum
version of the linear simplicity constraints used in the quantum discrete
context and a linear version of the quadratic volume constraints that are
necessary to complete the reduction from the topological theory to gravity. We
illustrate and discuss also the discrete counterpart of the same continuum
linear constraints. Moreover, we show under which additional conditions the
discrete volume constraints follow from the simplicity constraints, thus
playing the role of secondary constraints. Our analysis clarifies how the
discrete constructions of spin foam models are related to a continuum theory
with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010
(ERE2010, Granada, Spain
On the Glauber model in a quantum representation
The Glauber model is reconsidered based on a quantum formulation of the
Master equation. Unlike the conventional approach the temperature and the Ising
energy are included from the beginning by introducing a Heisenberg-like picture
of the second quantized operators. This method enables us to get an exact
expression for the transition rate of a single flip-process
which is in accordance with the principle of detailed balance. The transition
rate differs significantly from the conventional one due to Glauber in the low
temperature regime. Here the behavior is controlled by the Ising energy and not
by the microscopic time scale.Comment: 8 page
- …