2,273 research outputs found

    HI Science with the Square Kilometre Array

    Full text link
    The Square Kilometre Array (SKA) will be a formidable instrument for the detailed study of neutral hydrogen (HI) in external galaxies and in our own Galaxy and Local Group. The sensitivity of the SKA, its wide receiver bands, and the relative freedom from radio frequency interference at the SKA sites will allow the imaging of substantial number of high-redshift galaxies in HI for the first time. It will also allow imaging of galaxies throughout the Local Volume at resolutions of <100 pc and detailed investigations of galaxy disks and the transition between disks, halos and the intergalactic medium (IGM) in the Milky Way and external galaxies. Together with deep optical and millimetre/sub-mm imaging, this will have a profound effect on our understanding of the formation, growth and subsequent evolution of galaxies in different environments. This paper provides an introductory text to a series of nine science papers describing the impact of the SKA in the field of HI and galaxy evolution. We propose a nested set of surveys with phase 1 of the SKA which will help tackle much of the exciting science described. Longer commensal surveys are discussed, including an ultra-deep survey which should permit the detection of galaxies at z=2, when the Universe was a quarter of its current age. The full SKA will allow more detailed imaging of even more distant galaxies, and allow cosmological and evolutionary parameters to be measured with exquisite precision.Comment: 9 pages, 1 figure, accepted by Proceedings of Science as the HI Overview Chapter for "Advancing Astrophysics with the Square Kilometre Array

    Cosmological Forecasts for Combined and Next Generation Peculiar Velocity Surveys

    Full text link
    Peculiar velocity surveys present a very promising route to measuring the growth rate of large-scale structure and its scale dependence. However, individual peculiar velocity surveys suffer from large statistical errors due to the intrinsic scatter in the relations used to infer a galaxy's true distance. In this context we use a Fisher Matrix formalism to investigate the statistical benefits of combining multiple peculiar velocity surveys. We find that for all cases we consider there is a marked improvement on constraints on the linear growth rate fσ8f\sigma_{8}. For example, the constraining power of only a few peculiar velocity measurements is such that the addition of the 2MASS Tully-Fisher survey (containing only 2,000\sim2,000 galaxies) to the full redshift and peculiar velocity samples of the 6-degree Field Galaxy Survey (containing 110,000\sim 110,000 redshifts and 9,000\sim 9,000 velocities) can improve growth rate constraints by 20%\sim20\%. Furthermore, the combination of the future TAIPAN and WALLABY+WNSHS surveys has the potential to reach a 3%\sim3\% error on fσ8f\sigma_{8}, which will place tight limits on possible extensions to General Relativity. We then turn to look at potential systematics in growth rate measurements that can arise due to incorrect calibration of the peculiar velocity zero-point and from scale-dependent spatial and velocity bias. For next generation surveys, we find that neglecting velocity bias in particular has the potential to bias constraints on the growth rate by over 5σ5\sigma, but that an offset in the zero-point has negligible impact on the velocity power spectrum.Comment: 24 pages, 11 figures, 7 tables. Accepted for publication in MNRA

    Future ASKAP Studies of the Local Volume

    Full text link
    The Australian SKA Pathfinder (ASKAP) will be a powerful instrument for performing large-scale surveys of galaxies. Its frequency range and large field of view makes it especially useful for an all-sky survey of Local Volume galaxies, and will probably increase the number of known galaxies closer than 10 Mpc by a factor of two and increase, by at least an order of magnitude, the number detected in HI. Implications for our knowledge of the HI mass function for the very faintest galaxies and for the structure and dynamics of the Local Volume are discussed.Comment: 4 pages, 2 figures. To appear in 'Galaxies in the Local Volume' (Sydney, July 2007), eds. B. Koribalski & H. Jerjen, Astrophys. & Space Scienc

    Bulk flow and shear in the local Universe: 2MTF and COSMICFLOWS-3

    Get PDF
    The low-order kinematic moments of galaxies, namely bulk flow and shear, enables us to test whether theoretical models can accurately describe the evolution of the mass density field in the nearby Universe. We use the so-called etaMLE maximum likelihood estimator in logdistance space to measure thesemoments from a combined sample of the 2MASS Tully-Fisher (2MTF) survey and the COSMICFLOWS-3 (CF3) compilation. Galaxies common between 2MTF and CF3 demonstrate a small zero-point difference of -0.016+-0.002 dex.We test the etaMLE on 16 mock 2MTF survey catalogues in order to explore how well the etaMLE recovers the true moments, and the effect of sample anisotropy. On the scale size of 37 Mpc/h, we find that the bulk flow of the local Universe is 259 +- 15 km/h in the direction is (l,b)=(300+-4, 23+-3) (Galactic coordinates). The average shear amplitude is 1.7+-0.4 h km/s/Mpc. We use a variable window function to explore the bulk and shear moments as a function of depth. In all cases, the measurements are consistent with the predictions of the L cold dark matter (LCDM) model.Comment: 11 pages, 10+2 figures, published in MNRAS, Oct/201

    Extragalactic Zeeman Detections in OH Megamasers

    Full text link
    We have measured the Zeeman splitting of OH megamaser emission at 1667 MHz from five (ultra)luminous infrared galaxies ([U]LIRGs) using the 305 m Arecibo telescope and the 100 m Green Bank Telescope. Five of eight targeted galaxies show significant Zeeman-splitting detections, with 14 individual masing components detected and line-of-sight magnetic field strengths ranging from ~0.5-18 mG. The detected field strengths are similar to those measured in Galactic OH masers, suggesting that the local process of massive star formation occurs under similar conditions in (U)LIRGs and the Galaxy, in spite of the vastly different large-scale environments. Our measured field strengths are also similar to magnetic field strengths in (U)LIRGs inferred from synchrotron observations, implying that milligauss magnetic fields likely pervade most phases of the interstellar medium in (U)LIRGs. These results provide a promising new tool for probing the astrophysics of distant galaxies.Comment: 32 pages, 14 figures, 8 tables. Accepted for publication in The Astrophysical Journal v680n2, June 20, 2008; corrected 2 typo
    corecore