1,124 research outputs found

    D-brane charge, flux quantisation and relative (co)homology

    Get PDF
    We reconsider the problem of U(1) flux and D0-charge for D-branes in the WZW model and investigate the relationship between the different definitions that have been proposed recently. We identify the D0-charge as a particular reduction of a class in the relative cohomology of the group modulo the D-submanifold. We investigate under which conditions this class is equivalent to the first Chern class of a line bundle on the D-submanifold and we find that in general there is an obstruction given by the cohomology class of the NS 3-form. Therefore we conclude that for topologically nontrivial B-fields, there is strictly speaking no U(1) gauge field on the D-submanifold. Nevertheless the ambiguity in the flux is not detected by the D0-charge. This has a natural interpretation in terms of gerbes.Comment: 16 pages, 3 figures (v2: cosmetic changes and definition of relative de Rham complex

    On the structure of symmetric self-dual Lie algebras

    Full text link
    A finite-dimensional Lie algebra is called (symmetric) self-dual, if it possesses an invariant nondegenerate (symmetric) bilinear form. Symmetric self-dual Lie algebras have been studied by Medina and Revoy, who have proven a very useful theorem about their structure. In this paper we prove a refinement of their theorem which has wide applicability in Conformal Field Theory, where symmetric self-dual Lie algebras start to play an important role due to the fact that they are precisely the Lie algebras which admit a Sugawara construction. We also prove a few corollaries which are important in Conformal Field Theory. (This paper provides mathematical details of results used, but only sketched, in the companion paper hep-th/9506151.)Comment: 19 pages, .dvi.uu (needs AMSFonts 2.1+

    New Supersymmetrizations of the Generalized KdV Hierarchies

    Full text link
    Recently we investigated a new supersymmetrization procedure for the KdV hierarchy inspired in some recent work on supersymmetric matrix models. We extend this procedure here for the generalized KdV hierarchies. The resulting supersymmetric hierarchies are generically nonlocal, except for the case of Boussinesque which we treat in detail. The resulting supersymmetric hierarchy is integrable and bihamiltonian and contains the Boussinesque hierarchy as a subhierarchy. In a particular realization, we extend it by defining supersymmetric odd flows. We end with some comments on a slight modification of this supersymmetrization which yields local equations for any generalized KdV hierarchy.Comment: 10 pages, uuencoded compressed tar'd .dvi file, Bonn-HE-93-1

    Clinical reasoning in feline epilepsy: Which combination of clinical information is useful?

    Get PDF
    We sought to identify the association between clinical risk factors and the diagnosis of idiopathic epilepsy (IE) or structural epilepsy (SE) in cats, using statistical models to identify combinations of discrete parameters from the patient signalment, history and neurological examination findings that could suggest the most likely diagnosis. Data for 138 cats with recurrent seizures were reviewed, of which 110 were valid for inclusion. Seizure aetiology was classified as IE in 57% and SE in 43% of cats. Binomial logistic regression analyses demonstrated that pedigree status, older age at seizure onset (particularly >7 years old), abnormal neurological examinations, and ictal vocalisation were associated with a diagnosis of SE compared to IE, and that ictal salivation was more likely to be associated with a diagnosis of IE than SE. These findings support the importance of considering inter-ictal neurological deficits and seizure history in clinical reasoning

    Gauging the Wess-Zumino term of a sigma model with boundary

    Full text link
    We investigate the gauging of the Wess-Zumino term of a sigma model with boundary. We derive a set of obstructions to gauging and we interpret them as the conditions for the Wess-Zumino term to extend to a closed form in a suitable equivariant relative de Rham complex. We illustrate this with the two-dimensional sigma model and we show that the new obstructions due to the boundary can be interpreted in terms of Courant algebroids. We specialise to the case of the Wess-Zumino-Witten model, where it is proved that there always exist suitable boundary conditions which allow gauging any subgroup which can be gauged in the absence of a boundary. We illustrate this with two natural classes of gaugings: (twisted) diagonal subgroups with boundary conditions given by (twisted) conjugacy classes, and chiral isotropic subgroups with boundary conditions given by cosets.Comment: 18 pages (minor changes in response to referee report

    Post-growth annealing of GaMnAs under As capping - an alternative way to increase Tc

    Full text link
    We demonstrate that in situ post-growth annealing of GaMnAs layers under As capping is adequate for achieving high Curie temperatures (Tc) in a similar way as ex situ annealing in air or in N2 atmosphere practiced earlier.Comment: 13 pages, 4 figure
    corecore