2,278 research outputs found
Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness
In black-box testing, the tester creates a set of tests to exercise a system under test without regard to the internal structure of the system. Generally, no objective metric is used to measure the adequacy of black-box tests. In recent work, we have proposed three requirements coverage metrics, allowing testers to objectively measure the adequacy of a black-box test suite with respect to a set of requirements formalized as Linear Temporal Logic (LTL) properties. In this report, we evaluate the effectiveness of these coverage metrics with respect to fault finding. Specifically, we conduct an empirical study to investigate two questions: (1) do test suites satisfying a requirements coverage metric provide better fault finding than randomly generated test suites of approximately the same size?, and (2) do test suites satisfying a more rigorous requirements coverage metric provide better fault finding than test suites satisfying a less rigorous requirements coverage metric? Our results indicate (1) only one coverage metric proposed -- Unique First Cause (UFC) coverage -- is sufficiently rigorous to ensure test suites satisfying the metric outperform randomly generated test suites of similar size and (2) that test suites satisfying more rigorous coverage metrics provide better fault finding than test suites satisfying less rigorous coverage metrics
Pré-condicionamento de acessos de Saccharum para criopreservação.
Edição Especial dos Anais do 3° Simpósio da Rede de Recursos Genéticos Vegetais do Nordeste, Aracaju, out. 2017
Scanning electron microscopy and machine learning reveal heterogeneity in capsular morphotypes of the human pathogen Cryptococcus spp.
Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to defne four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifer whose overall accuracy reached 85% on the test dataset, with per-class specifcity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classifcation. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identifed and characterized using computational models so that future work may unveil morphological associations with yeast virulence
Alphavirus replicon particles acting as adjuvants promote CD8+ T cell responses to co-delivered antigen
Alphavirus replicon particles induce strong antibody and CD8+ T cell responses to expressed antigens in numerous experimental systems. We have recently demonstrated that Venezuelan equine encephalitis virus replicon particles (VRP) possess adjuvant activity for systemic and mucosal antibody responses. In this report, we demonstrate that VRP induced an increased and balanced serum IgG subtype response to co-delivered antigen, with simultaneous induction of antigen-specific IgG1 and IgG2a antibodies, and increased both systemic and mucosal antigen-specific CD8+ T cell responses, as measured by an IFN-γ ELISPOT assay. Additionally, VRP further increased antigen-specific T cell immunity in an additive fashion following co-delivery with the TLR ligand, CpG DNA. VRP infection led to recruitment of CD8+ T cells into the mucosal compartment, possibly utilizing the mucosal homing receptor, as this integrin was upregulated on CD8+ T cells in the draining lymph node of VRP-infected animals, where VRP-infected dendritic cells reside. This newly recognized ability of VRP to mediate increased T cell response towards co-delivered antigen provides the potential to both define the molecular basis of alphavirus-induced immunity, and improve alphavirus-based vaccines
Equilibrium random-field Ising critical scattering in the antiferromagnet Fe(0.93)Zn(0.07)F2
It has long been believed that equilibrium random-field Ising model (RFIM)
critical scattering studies are not feasible in dilute antiferromagnets close
to and below Tc(H) because of severe non-equilibrium effects. The high magnetic
concentration Ising antiferromagnet Fe(0.93)Zn(0.07)F2, however, does provide
equilibrium behavior. We have employed scaling techniques to extract the
universal equilibrium scattering line shape, critical exponents nu = 0.87 +-
0.07 and eta = 0.20 +- 0.05, and amplitude ratios of this RFIM system.Comment: 4 pages, 1 figure, minor revision
Search for Post-Merger Gravitational Waves From the Remnant of the Binary Neutron Star Merger GW170817
The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. (see article for rest of abstract.
Search for High-Energy Neutrinos From Binary Neutron Star Merger GW170817 With ANTARES, IceCube, and the Pierre Auger Observatory
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle
- …