106 research outputs found
Challenges for standardization of Clostridium difficile typing methods
Typing of Clostridium difficile facilitates understanding of the epidemiology of the infection. Some evaluations have shown that certain strain types (for example, ribotype 027) are more virulent than others and are associated with worse clinical outcomes. Although restriction endonuclease analysis (REA) and pulsed-field gel electrophoresis have been widely used in the past, PCR ribotyping is the current method of choice for typing of C. difficile. However, global standardization of ribotyping results is urgently needed. Whole-genome sequencing of C. difficile has the potential to provide even greater epidemiologic information than ribotyping
Clostridium difficile ribotypes in Austria: a multicenter, hospital-based survey
A prospective, noninterventional survey was conducted among Clostridium difficile positive patients identified in the time period of July until October 2012 in 18 hospitals distributed across all nine Austrian provinces. Participating hospitals were asked to send stool samples or isolates from ten successive patients with C.difficile infection to the National Clostridium difficile Reference Laboratory at the Austrian Agency for Health and Food Safety for PCR-ribotyping and in vitro susceptibility testing. A total of 171 eligible patients were identified, including 73 patients with toxin-positive stool specimens and 98 patients from which C. difficile isolates were provided. Of the 159 patients with known age, 127 (74.3 %) were 65 years or older, the median age was 76 years (range: 9–97 years), and the male to female ratio 2.2. Among these patients, 73 % had health care-associated and 20 % community-acquired C. difficile infection (indeterminable 7 %). The all-cause, 30-day mortality was 8.8 % (15/171). Stool samples yielded 46 different PCR-ribotypes, of which ribotypes 027 (20 %), 014 (15.8 %), 053 (10.5 %), 078 (5.3 %), and 002 (4.7 %) were the five most prevalent. Ribotype 027 was found only in the provinces Vienna, Burgenland, and Lower Austria. Severe outcome of C. difficile infection was found to be associated with ribotype 053 (prevalence ratio: 3.04; 95 % CI: 1.24, 7.44), not with the so-called hypervirulent ribotypes 027 and 078. All 027 and 053 isolates exhibited in vitro resistance against moxifloxacin. Fluoroquinolone use in the health care setting must be considered as a factor favoring the spread of these fluoroquinolone resistant C. difficile clones
Patent Human Infections with the Whipworm, Trichuris trichiura, Are Not Associated with Alterations in the Faecal Microbiota
Background: The soil-transmitted helminth (STH), Trichuris trichiura colonises the human large intestine where it may
modify inflammatory responses, an effect possibly mediated through alterations in the intestinal microbiota. We
hypothesised that patent T. trichiura infections would be associated with altered faecal microbiota and that anthelmintic treatment would induce a microbiota resembling more closely that observed in uninfected individuals.
Materials and Methods: School children in Ecuador were screened for STH infections and allocated to 3 groups: uninfected, T. trichiura only, and mixed infections with T. trichiura and Ascaris lumbricoides. A sample of uninfected children and those with T. trichiura infections only were given anthelmintic treatment. Bacterial community profiles in faecal samples were studied by 454 pyrosequencing of 16 S rRNA genes.
Results: Microbiota analyses of faeces were done for 97 children: 30 were uninfected, 17 were infected with T. trichiura, and 50 with T. trichiura and A. lumbricoides. Post-treatment samples were analyzed for 14 children initially infected with T. trichiura alone and for 21 uninfected children. Treatment resulted in 100% cure of STH infections. Comparisons of the microbiota at different taxonomic levels showed no statistically significant differences in composition between uninfected
children and those with T. trichiura infections. We observed a decreased proportional abundance of a few bacterial genera from the Clostridia class of Firmicutes and a reduced bacterial diversity among children with mixed infections compared to the other two groups, indicating a possible specific effect of A. lumbricoides infection. Anthelmintic treatment of children with T. trichiura did not alter faecal microbiota composition.
Discussion: Our data indicate that patent human infections with T. trichiura may have no effect on faecal microbiota but that A. lumbricoides colonisation might be associated with a disturbed microbiota. Our results also catalogue the microbiota of rural Ecuadorians and indicate differences with individuals from more urban industrialised societies
Obscured phylogeny and possible recombinational dormancy in Escherichia coli
<p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>is one of the best studied organisms in all of biology, but its phylogenetic structure has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence.</p> <p>Results</p> <p>The phylogeny of <it>E. coli </it>varies according to the segment of chromosome analyzed. Recombination between extant <it>E. coli </it>groups is largely limited to only three intergroup pairings.</p> <p>Conclusions</p> <p>Segment-dependent phylogenies most likely are legacies of a complex recombination history. However, <it>E. coli </it>are now in an epoch in which they no longer broadly share DNA. Using the definition of species as organisms that freely exchange genetic material, this recombinational dormancy could reflect either the end of <it>E. coli </it>as a species, or herald the coalescence of <it>E. coli </it>groups into new species.</p
Rapid Multi-Locus Sequence Typing Using Microfluidic Biochips
sequencing of 6–8 housekeeping loci to assign unique sequence types. In this work we adapted MLST to a rapid microfluidics platform in order to enhance speed and reduce laboratory labor time. isolated in this study from one location in Rockville, Maryland (0.04 substitutions per site) was found to be as great as the global collection of isolates.Biogeographical investigation of pathogens is only one of a panoply of possible applications of microfluidics based MLST; others include microbiologic forensics, biothreat identification, and rapid characterization of human clinical samples
The Gut Microbiota of Wild Mice
The gut microbiota profoundly affects the biology of its host. The composition of the microbiota is dynamic and is affected by both host genetic and many environmental effects. The gut microbiota of laboratory mice has been studied extensively, which has uncovered many of the effects that the microbiota can have. This work has also shown that the environments of different research institutions can affect the mouse microbiota. There has been relatively limited study of the microbiota of wild mice, but this has shown that it typically differs from that of laboratory mice (and that maintaining wild caught mice in the laboratory can quite quickly alter the microbiota). There is also inter-individual variation in the microbiota of wild mice, with this principally explained by geographical location. In this study we have characterised the gut (both the caecum and rectum) microbiota of wild caught Mus musculus domesticus at three UK sites and have investigated how the microbiota varies depending on host location and host characteristics. We find that the microbiota of these mice are generally consistent with those described from other wild mice. The rectal and caecal microbiotas of individual mice are generally more similar to each other, than they are to the microbiota of other individuals. We found significant differences in the diversity of the microbiotas among mice from different sample sites. There were significant correlations of microbiota diversity and body weight, a measure of age, body-mass index, serum concentration of leptin, and virus, nematode and mite infection
Comparative genomic analysis of toxin-negative strains of Clostridium difficile from humans and animals with symptoms of gastrointestinal disease
Background: Clostridium difficile infections (CDI) are a significant health problem to humans and food animals. Clostridial toxins ToxA and ToxB encoded by genes tcdA and tcdB are located on a pathogenicity locus known as the PaLoc and are the major virulence factors of C. difficile. While toxin-negative strains of C. difficile are often isolated from faeces of animals and patients suffering from CDI, they are not considered to play a role in disease. Toxin-negative strains of C. difficile have been used successfully to treat recurring CDI but their propensity to acquire the PaLoc via lateral gene transfer and express clinically relevant levels of toxins has reinforced the need to characterise them genetically. In addition, further studies that examine the pathogenic potential of toxin-negative strains of C. difficile and the frequency by which toxin-negative strains may acquire the PaLoc are needed. Results: We undertook a comparative genomic analysis of five Australian toxin-negative isolates of C. difficile that lack tcdA, tcdB and both binary toxin genes cdtA and cdtB that were recovered from humans and farm animals with symptoms of gastrointestinal disease. Our analyses show that the five C. difficile isolates cluster closely with virulent toxigenic strains of C. difficile belonging to the same sequence type (ST) and have virulence gene profiles akin to those in toxigenic strains. Furthermore, phage acquisition appears to have played a key role in the evolution of C. difficile. Conclusions: Our results are consistent with the C. difficile global population structure comprising six clades each containing both toxin-positive and toxin-negative strains. Our data also suggests that toxin-negative strains of C. difficile encode a repertoire of putative virulence factors that are similar to those found in toxigenic strains of C. difficile, raising the possibility that acquisition of PaLoc by toxin-negative strains poses a threat to human health. Studies in appropriate animal models are needed to examine the pathogenic potential of toxin-negative strains of C. difficile and to determine the frequency by which toxin-negative strains may acquire the PaLoc
Genome Mining for Radical SAM Protein Determinants Reveals Multiple Sactibiotic-Like Gene Clusters
Thuricin CD is a two-component bacteriocin produced by Bacillus thuringiensis that kills a wide range of clinically significant Clostridium difficile. This bacteriocin has recently been characterized and consists of two distinct peptides, Trnβ and Trnα, which both possess 3 intrapeptide sulphur to α-carbon bridges and act synergistically. Indeed, thuricin CD and subtilosin A are the only antimicrobials known to possess these unusual structures and are known as the sactibiotics (sulplur to alpha carbon-containing antibiotics). Analysis of the thuricin CD-associated gene cluster revealed the presence of genes encoding two highly unusual SAM proteins (TrnC and TrnD) which are proposed to be responsible for these unusual post-translational modifications. On the basis of the frequently high conservation among enzymes responsible for the post-translational modification of specific antimicrobials, we performed an in silico screen for novel thuricin CD–like gene clusters using the TrnC and TrnD radical SAM proteins as driver sequences to perform an initial homology search against the complete non-redundant database. Fifteen novel thuricin CD–like gene clusters were identified, based on the presence of TrnC and TrnD homologues in the context of neighbouring genes encoding potential bacteriocin structural peptides. Moreover, metagenomic analysis revealed that TrnC or TrnD homologs are present in a variety of metagenomic environments, suggesting a widespread distribution of thuricin-like operons in a variety of environments. In-silico analysis of radical SAM proteins is sufficient to identify novel putative sactibiotic clusters
Recommended from our members
Comparative genomics of European Avian Pathogenic E. coli (APEC)
Background
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which results in significant economic losses to the poultry industry worldwide. However, the diversity between isolates remains poorly understood. Here, a total of 272 APEC isolates collected from the United Kingdom (UK), Italy and Germany were characterised using multiplex polymerase chain reactions (PCRs) targeting 22 equally weighted factors covering virulence genes, R-type and phylogroup. Following these analysis, 95 of the selected strains were further analysed using Whole Genome Sequencing (WGS).
Results
The most prevalent phylogroups were B2 (47%) and A1 (22%), although there were national differences with Germany presenting group B2 (35.3%), Italy presenting group A1 (53.3%) and UK presenting group B2 (56.1%) as the most prevalent. R-type R1 was the most frequent type (55%) among APEC, but multiple R-types were also frequent (26.8%). Following compilation of all the PCR data which covered a total of 15 virulence genes, it was possible to build a similarity tree using each PCR result unweighted to produce 9 distinct groups. The average number of virulence genes was 6-8 per isolate, but no positive association was found between phylogroup and number or type of virulence genes. A total of 95 isolates representing each of these 9 groupings were genome sequenced and analysed for in silico serotype, Multilocus Sequence Typing (MLST), and antimicrobial resistance (AMR). The UK isolates showed the greatest variability in terms of serotype and MLST compared with German and Italian isolates, whereas the lowest prevalence of AMR was found for German isolates. Similarity trees were compiled using sequencing data and notably single nucleotide polymorphism data generated ten distinct geno-groups. The frequency of geno-groups across Europe comprised 26.3% belonging to Group 8 representing serogroups O2, O4, O18 and MLST types ST95, ST140, ST141, ST428, ST1618 and others, 18.9% belonging to Group 1 (serogroups O78 and MLST types ST23, ST2230), 15.8% belonging to Group 10 (serogroups O8, O45, O91, O125ab and variable MLST types), 14.7% belonging to Group 7 (serogroups O4, O24, O35, O53, O161 and MLST type ST117) and 13.7% belonging to Group 9 (serogroups O1, O16, O181 and others and MLST types ST10, ST48 and others). The other groups (2, 3, 4, 5 and 6) each contained relatively few strains.
However, for some of the genogroups (e.g. groups 6 and 7) partial overlap with SNPs grouping and PCR grouping (matching PCR groups 8 (13 isolates on 22) and 1 (14 isolates on 16) were observable). However, it was not possible to obtain a clear correlation between genogroups and unweighted PCR groupings. This may be due to the genome plasticity of E. coli that enables strains to carry the same virulence factors even if the overall genotype is substantially different.
Conclusions
The conclusion to be drawn from the lack of correlations is that firstly, APEC are very diverse and secondly, it is not possible to rely on any one or more basic molecular or phenotypic tests to define APEC with clarity, reaffirming the need for whole genome analysis approaches which we describe here.
This study highlights the presence of previously unreported serotypes and MLSTs for APEC in Europe. Moreover, it is a first step on a cautious reconsideration of the merits of classical identification criteria such as R typing, phylogrouping and serotyping
Nef Alleles from All Major HIV-1 Clades Activate Src-Family Kinases and Enhance HIV-1 Replication in an Inhibitor-Sensitive Manner
The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs) that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts). Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication
- …